Journal Reading 12-Lead ECG Findings of Pulmonary Hypertension Occur More Frequently In Emergent Department Patients With Pulmonary Embolism Than in Patients Without pulmonary Embolism Supervisor: 鄭伯良醫師 Reporter: Intern林永奇 990719

PICO

- P: Patients with pulmonary embolism
- I: ECG findings
- C: objective diagnostic testing (D-dimer, CTPA, V/Q scan, venous US)
- O: Diagnosis and treatment

Introduction

- Acute pulmonary embolism increases the pulmonary arterial pressure and causes right ventricular strain.
- ECG findings: S₁Q₃T₃ pattern, precordial T-wave inversions, tachycardia, incomplete or complete RBBB.
- Is ECG specific enough to be useful in diagnosis or treatment?

Study Design

- Secondary analysis of prospective cohort of patients who were evaluated for pulmonary embolism. From 2003.07.01~2006.11.30.
- Objective diagnostic testings were ordered.
- Patients were asked to report any cardiopulmonary disease.

Characteristic	ECG Obtained, n=6,049	No ECG Obtained n=943
Age, y, ±SD	49±17	43±18
Sex, No. (%)		
Male	1,959 (32)	252 (27)
Female	4,090 (68)	691 (73)
Race, No. (%)		
Black	2,057 (34)	407 (43)
White	3,479 (58)	438 (47)
Hispanic, No. (%)	362 (6)	68 (7)
Asian	46 (1)	13(1)
Other	105(2)	17(2)
Previous VTE, No. (%)	616 (10)	116 (12
CHF, No. (%)	443 (7)	46 (5)
COPD, No. (%)	421(7)	44 (5)
CAD, No. (%)	639 (11)	49 (5)
PE diagnosis within 45 days, No. (%)	354 (5.9)	62 (7)
Death within 45 days, No. (%)	73(1)	12(1)

			-								
				Ratio rterpreta							
			5-10								
			D-10 D-5				214				
			Parameter and the second	2-5 Weak endence to rule in 0.5-2.0 Bio significant change in t							
			0.5-2.0		idant change in idence to rule o						
			0 1-0 2		enidence to rul						
			k0.1		idence to rule o						
D	E-35	4 : DVT:4	13								
				mairties code	andmon on Aire	***	Р	E:196			
and a con many	to mining	among all patients and those with no preexisting cardiopulmonary dise: All Patients (n=6.049)					Patients With No Premisting Cardiopulmonary Disease (n=1.836)				
	-		_	Action to the last of the last		_		_		_	
ECG Feature	N	Sensitivity, %	Specificity, %	LR+ (95% CI)	OR (95% CI)	N	Smultivity, %	Specificity, %	LR+ (95% CI)	OR (95% CI)	
										100000000000000000000000000000000000000	
Non-sinus rhythm	1,050	23.5	83.4	1.4(1.2-1.7)	15(12-20)	577	24.5	85.5	17(13-22)	1.9(1.3-27)	
Von-sinus rhythm Fachycardia										100000000000000000000000000000000000000	
ion-sinus rhythm achycardia ncomplete FBEB	1,030 994	23.5 28.8	83.4 84.3	1.4(1.2-1.7) 18(15-2.2)	150.2-20 22(17-28)	577 550	24.5 28.6	85.5 86.4	17(13-22) 21(17-26)	1.9(1.3-27) 25(1.8-3.6)	
Non-sinus rhythra Tachycardia Incomplete RBBB Complete RBBB	1,030 994 179	23.5 28.8 4.8	83.4 84.3 97.2	1.4(1.2-1.7) 18(15-2.2) 1.7(1.0-2.7)	156.2-29 22(17-28) 17(10-29)	577 550 97	24.5 28.6 4.6	85.5 86.4 97.6	17(13-22) 21(17-26) 19(10-36)	1.9(1.3-27) 25(1.8-3.6) 1.9(0.8-3.9)	
For-sinus rhythm Fachycardia Incomplete RBBB Complete RBBB S wave in lead I	1,050 994 179 141	23.5 28.8 4.8 3.1	83.4 84.3 97.2 97.7	1.4(1.2-1.7) 1.8(15-2.2) 1.7(1.0-2.7) 1.4(0.8-2.5)	15 (1.2-2.0) 22 (1.7-2.8) 1.7 (1.0-2.9) 1.4 (0.7-2.8)	577 550 97 68	24.5 28.6 4.6 3.1	85.5 86.4 97.6 98.3	1.7 (1.3-2.2) 2.1 (1.7-2.6) 1.9 (1.0-3.6) 1.8 (0.8-4.0)	1.9(1.3-27) 25(1.8-3.6) 1.9(0.8-3.9) 1.8(0.6-4.3)	
Von-sinus rhythma factycardia hoomplete RBBB Complete RBBB 5 wave in lead 1 2 wave in lead 11	1,030 994 179 141 903	23.5 28.8 4.8 3.1 22.3	83.4 84.3 97.2 97.7 85.5	1.4(1.2-1.7) 1.8(1.5-2.2) 1.7(1.0-2.7) 1.4(0.8-2.5) 1.5(1.3-1.9)	1562-20 22(17-28) 17(10-29) 14(07-26) 17(13-22)	577 550 97 58 560	24.5 28.6 4.6 3.1 25.5	85.5 86.4 97.6 98.3 86.0	1.7 (1.3-2.2) 2.1 (1.7-2.6) 1.9 (1.0-3.6) 1.8 (0.8-4.0) 1.8 (1.4-2.3)	1.9(1.3-27) 2.5(1.8-3.6) 1.9(0.8-3.9) 1.8(0.6-4.3) 2.1(1.5-3.0)	
Non-sinus rhythma Tactycardia Incomplete RBBB Complete RBBB 5 wave in lead II Q wave in lead III Invented T in lead III	1,050 994 179 141 903 898	23.5 28.8 4.8 3.1 22.3 24.6	83.4 84.3 97.2 97.7 85.5 85.8	1.4(1.2-1.7) 18(15-2.2) 1.7(1.0-2.7) 1.4(0.8-2.5) 1.5(1.3-1.9) 1.7(1.4-2.1)	15 (1.2-2.0) 22 (1.7-2.8) 1.7 (1.0-2.9) 1.4 (0.7-2.6) 1.7 (1.3-2.2) 2.0 (1.5-2.5)	577 550 97 58 560 524	24.5 28.6 4.6 3.1 25.5 23.5	85.5 86.4 97.6 98.3 86.0 86.9	17(13-22) 21(17-26) 19(10-36) 18(08-40) 18(14-23) 18(14-23)	1.9(1.3-2.7) 2.5(1.8-3.6) 1.9(0.8-3.9) 1.8(0.6-4.3) 2.1(1.5-3.0) 2.0(1.4-2.9)	
Non-sinus rhythm Tactycarda Incomplete RBBB 5 wase in lead II Q wave in lead III Invened T in lead III	1,050 994 179 141 903 898 1,081	23.5 28.8 4.8 3.1 22.3 24.6 30.5	83.4 84.3 97.2 97.7 85.5 85.8 82.9	1.4(1.2-1.7) 18(15-2.2) 1.7(1.0-2.7) 1.4(0.8-2.5) 1.5(1.3-1.9) 1.7(1.4-2.1) 1.8(1.5-2.1)	1.5 (3.2-2.9) 2.2 (1.7-2.8) 1.7 (1.0-2.9) 1.4 (0.7-2.6) 1.7 (1.3-2.2) 2.0 (1.5-2.5) 2.1 (1.7-2.7)	577 550 97 68 560 524 674	24.5 28.6 4.6 3.1 25.5 23.5 35.2	85.5 86.4 97.6 98.3 86.0 86.9 83.4	17(13-22) 21(17-26) 19(10-36) 18(08-40) 18(14-23) 18(14-23) 21(17-26)	1.9(1.3-2.7) 2.5(1.8-3.6) 1.9(0.8-3.9) 1.8(0.6-4.3) 2.1(1.5-3.0) 2.0(1.4-2.9) 2.7(2.0-3.7)	
Non-sinus rhytima Tachycardia Incomplete FBBB Complete FBBB 5 wase in lead III V wase in lead III streened T in lead III SSQ313	1,050 994 179 141 903 898 1,081	23.5 26.8 4.8 3.1 22.3 24.6 30.5 8.5 9.3 37.9	83.4 84.3 97.2 97.7 85.5 85.8 82.9 97.7	1.4(1.2-1.7) 18(15-2.2) 1.7(1.0-2.7) 1.4(0.8-2.5) 1.5(1.3-1.9) 1.7(1.4-2.1) 1.8(1.5-2.1) 3.7(2.5-5.4)	1.5 (3.2-2.0) 2.2 (1.7-2.8) 1.7 (1.0-2.9) 1.4 (0.7-2.6) 1.7 (1.3-2.2) 2.0 (1.5-2.5) 2.1 (1.7-2.7) 4.0 (2.5-6.0)	577 550 97 88 560 524 674	24.5 28.6 4.6 3.1 25.5 23.5 35.2 8.7	85.5 86.4 97.6 98.3 86.0 86.9 83.4	17(13-22) 21(17-26) 19(10-36) 18(08-40) 18(14-23) 18(14-23) 21(17-26) 40(24-55)	1.9(1.5-27) 2.5(1.8-3.6) 1.9(0.8-3.9) 1.8(0.6-4.3) 2.1(1.5-3.0) 2.0(1.4-2.9) 2.7(2.0-3.7) 4.3(2.3-7.5)	
Non-sinus rhytim Tachycardia Incomplete RBEB Complete RBEB 5 wave in lead II Q wave in lead III Invened T in lead III \$10,913 \$15,650 changes Inverted T in V1	1,030 994 179 141 903 898 1,081 150 455	23.5 26.8 4.8 3.1 22.3 24.6 30.5 8.5 9.3	83.4 84.3 97.2 97.7 85.5 85.8 82.9 97.7 92.6	1.4(1.3-1.7) 1.8(15-2.2) 1.7(10-2.7) 1.4(0.8-2.6) 1.5(1.3-1.9) 1.7(1.4-2.1) 1.8(1.5-2.1) 3.7(2.5-5.4) 1.3(0.9-1.8) 1.1(10-1.3) 1.8(1.3-2.3)	150.2-20 220.7-28 170.8-29 140.7-24 170.3-22 200.5-29 210.7-27 4025-60 1309-19	577 550 97 58 560 524 674 96 262	24.5 28.6 4.6 3.1 25.5 22.5 35.2 8.7 9.7 37.2 11.7	85.5 86.4 97.6 98.3 86.0 86.9 83.4 97.8 93.3	17(13-22) 21(17-26) 19(10-36) 18(08-40) 18(14-23) 18(14-23) 21(17-26) 40(24-55) 15(09-22)	1.9(1.3-27) 2.5(1.8-3.6) 1.9(0.8-3.9) 1.8(0.6-4.3) 2.1(1.5-3.0) 2.0(1.4-2.9) 2.7(2.0-3.7) 4.3(2.3-7.5) 1.5(0.9-2.5)	
ECG Feature Non-sinus rhythm Techycards Incomplete PBEB Complete PBEB 5 ware in lead III 10 waive in lead III 11 waive in lead III 550333 5144gment changes Invented T in V1/42 Invented T in V1/42 Invented T in V1/43	1,030 994 179 141 903 898 1,081 160 455 2,073	23.5 26.8 4.8 3.1 22.3 24.6 30.5 8.5 9.3 37.9	63.4 84.3 97.2 97.1 65.5 95.8 82.9 97.7 92.6 66.0	1.4(1.3-1.7) 1.8(1.5-2.2) 1.7(1.0-2.7) 1.4(0.8-2.5) 1.5(1.3-1.9) 1.7(1.4-2.1) 1.8(1.5-2.1) 3.7(2.5-5.4) 1.3(0.9-1.8) 1.1(1.0-1.3)	15 (12-20) 22 (17-28) 17 (10-29) 14 (0.7-26) 17 (13-22) 20 (15-25) 21 (17-27) 40 (25-60) 13 (09-19) 12 (09-15)	577 550 97 68 500 524 674 96 262 1.364	24.5 28.6 4.6 3.1 25.5 23.5 35.2 8.7 9.7 37.2	85.5 86.4 97.6 98.3 86.0 86.9 83.4 97.8 93.3 64.5	17 (1.3-2.2) 2.1 (1.7-2.6) 1.9 (1.0-3.6) 1.8 (0.8-4.0) 1.8 (1.4-2.3) 1.8 (1.4-2.3) 2.1 (1.7-2.6) 4.0 (2.4-6.5) 1.5 (0.9-2.2) 1.1 (0.9-1.3)	1.9(1.3-27) 2.5(1.8-3.6) 1.9(0.8-3.9) 1.8(0.6-4.3) 2.1(1.5-3.0) 2.0(1.4-2.9) 2.7(2.0-3.7) 4.3(2.3-7.5) 1.5(0.9-2.5) 1.1(0.8-1.5)	

Table 3. Results of multivariate logistic regression of ECG findings, D-dimer, and troponin for the diagnosis of PE.*

OR (95% CI)			
4.9 (2.4-10.3)			
3.1 (1.4-6.9)			
1.8 (1.1-2.9)			
17.7 (9.5-33.2)			
3.0 (1.5-5.7)			
1.2 (0.7-2.0)			
1.3 (0.5-3.7)			
0.7 (0.2-2.1)			
0.7 (0.4-1.4)			

^{*}Tachycardia was defined as any pulse rate greater than 100 beats/min captured on the ECG. D-dimer increase was defined as a positive D-dimer level for those who had a qualitative D-dimer test ordered or any value above the reference range for those who had a quantitative D-dimer test ordered. Troponin increase was defined as any borderline or positive troponin-level measurement.

Limitation

- 1. No record of the depth of T-waves inversions.
- 2. Lack of an estimate of pulmonary arterial pressure.
- 3. No validation of ECG interpretation was performed.
- 4. No attemp to determine whether the ECG findings were new of preexisting.

Conclusion

- 1. SrQ₃T₃ and precordial T-wave inversions: Highest LR(+) values with lower-limit 95% CI.
- 2. Independent predictors
- 3. The sensitivities for the diagnosis of pulmonary embolism were low!
- (+): in symptomatic ED patients: possibility ↑
- (-): should not decrease the suspicion

