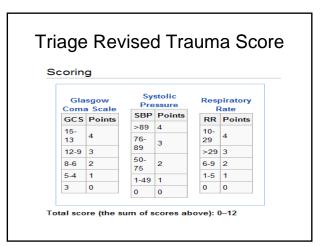
Mechanism, Glasgow Coma Scale, Age, and Arterial Pressure (MGAP): A new simple prehospital triage score to predict mortality in trauma patients

指導老師:吳柏衡 報告者:呂彥鋒 990622

- Trauma
 - the first cause of death before 40 yrs of age
 - responsible for numerous handicaps
 - high costs
- When care was provided at a trauma center -- overall risk of death was 25% lower
- Appropriate prehospital triage of trauma is important


Prehospital trauma scores

- Revised Trauma Score (RTS)
- Trauma Related Injury Severity Score (TRISS)
- Triage RTS (T-RTS)

Revised Trauma Score

Glasgow Coma Scale (GCS)	Systolic Blood Pressure (SBP)	Respiratory Rate (RR)	Coded Value
13-15	>89	10-29	4
9-12	76-89	>29	3
6-8	50-75	6-9	2
4-5	1-49	1-5	1
3	0	0	0
RTS =	0.9368 GCS + 0.7326 S	BP + 0.2908 RR	

$$\label{eq:product} \begin{split} & \textbf{F} = 1 \left((1 + e^{-b}) \right) \\ & \textbf{F}$$

Injury Severity Score(ISS)

• 分六區計算

- 頭頸,臉,胸,腹,四肢,外觀

- 各區分別從輕到重傷有1-6分
- 計算方法為最嚴重三區分數平方之總和
- ISS 計分為0-75(25+25+25 或一區分數為6)
- ISS > 15 則算嚴重創傷

Why MGAP score develop

- · Paramedic-staffed prehospital setting as sociated with high number of missing values
- Weighting coefficients used for RTS and TRISS are probably out of date
- · Both internal and external validation of a score is lacking
- Receiver operating characteristic (ROC) should not be considered as a definite answer

MATERIALS AND METHODS

- Derivation cohort
 - 22 centers in France and each center was asked to record cases in 2002
- Validation cohort
 - 1003 consecutive trauma patients from the same town and during the period, 2003 through 2005
- Informed consent was authorized

MATERIALS AND METHODS

- · All the severe trauma patients were cared for by a mobile intensive care unit
- The on-scene triage was based on the clinical assessment by an emergency physician
- Patients pronounced dead on the scene were excluded
- Prehospital phase: age; sex; trauma characteristics; initial systolic arterial blood pressure; heart rate; respiratory rate; Glasgow Coma Scale; peripheral oxygen saturation
- hospital phase: systolic arterial blood pressure, heart rate, SpO2, and Glasgow Coma Scale

MATERIALS AND METHODS

- Abbreviated Injury Scale, Injury Severity Score (ISS), RTS→ TRISS score
- · The primary end point was death (not ISS >15)

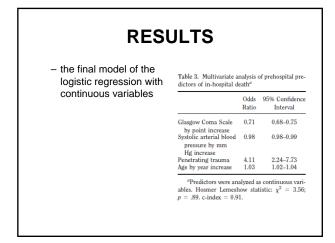
- any cause occurring within 30 days after trauma

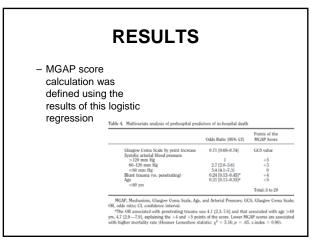
MATERIALS AND METHODS

The score construction steps

- first
 - semiparsimonious approach and only unbiased variables colinearity between variables was considered when r >.8 (Spearman coefficient matrix correlation)

 - Discrimination of the final models was assessed by c-statistics and calibration by the Hosmer-Lemeshow statistic
 - An internal validation was performed using tenfold crossvalidation and expressed as the difference of c-index Second
 - · Transform the continuous variables selected by the model Third
 - Simplify the weight allocated to each variable retained in the model

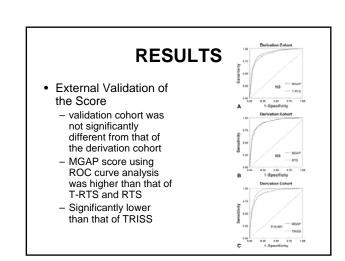

MATERIALS AND METHODS


- Statistical Analyses
 - Unpaired Student's t- test
 - Mann-Whitney U test
 - Fisher's exact method
- Sensitivity of at least 0.95. All *p* values were two-sided, *p* <.05 was considered significant, and SPSS 15.0 software

RESULTS

- Construction of the Score
 - univariate analysis of variables associated with mortality in the derivation cohort

	Dead (n = 250)	Alive (n = 1110)	p Vals
Men (%)	175 (70)	852 (77)	./12
Women (%)	75 (30)	258 (23)	
Age, yrs	42 ± 21	36 ± 17	<.00
Prehospital phase			
Systolic arterial blood pressure, mm Hg*	80 ± 60	120 ± 30	<.00
Heart rate, beats mine	77 ± 50	90 ± 20	<.00
Respiratory rate, cpm*	13 ± 11	20 ± 7	<.00
Glasgow Coma Scine"	3 [3-7]	15 [11-15]	<.00
Peripheral oxygen saturation, %"	91 (0-99)	98 [95-100]	<.00
Duration of prehospital period, mins ⁴	70 [55-95]	63 (45-90)	.02
Cardiac arrest (%) Prehospital resuscitation	49 (28)	11(1)	<.00
Total fluid resuscitation, mL	667 [500-1096]	500 (258-718)	< 00
Colloids, mL	3000 (500-1500)	500 [250-750]	<.00
Crystalloids, mL	500 10-500	300 [100-500]	
Catecholamine administration (%)	210 (84)	267 (21)	<.00
Mechanical ventilation (%)	222 (88)	347 (31)	<.00
Type of trauma	222 (88)	344 (34)	-0.00
Elunt (%)	218 (87)	3020 (92)	.03
Penetrating (%)	33 (13)	91 (8)	
Mechanism	22 (12)	9.1 (10)	
Fall (%)	65 (26)	216 (19)	.02
Car crash (%)	152 (61)	749(67)	.00
Cumbot (%)	21 (8)	29 (3)	< .00
Stab wound (%)	5 (2)	46(4)	.00
Other (%)	7 (3)	70 (6)	
Localization of trauma			
Head (%)	194 (78)	632 (57)	<.00
Spine (%)	48 (19)	255 (23)	.19
Thoras (%)	189 (76)	689 (62)	<.00
Abdomen (%)	95 (38)	254 (21)	<.00
Pehvis (%)	69 (28)	213 (19)	.00
Limb (%)	101 (40)	657 (59)	<.00



RESULTS

· Derivation cohort

- low (MGAP score 23-29): 45%, mortality of 2.8%
- intermediate (MGAP score 18–22): 21%, mortality of 15%
- high (MGAP score 3-17): 33%, mortality of 48%.
- Validation cohort
 - The low-risk group mortality was 2.8%
 - The intermediate-risk group mortality was 15%
 - The high-risk group mortality was 50%

DISCUSSION

- The goal of our study was to develop a score
 - accurately predict death
 - could be applied easily
- Accuracy- better than the T-RTS and as did the RTS
- Sensitivity- better than T-RTS and RTS, approaching TRISS

DISCUSSION

- these characteristics were validated both internally and externally→ clinical practice
- The American College of Surgeons suggested an overtriage rate of 50% to attain an acceptable level of undertriage
- ISS>15
 - Intermediate end point
 - Misrepresent the injury severity assessment and mortality estimates

DISCUSSION

- Glasgow Coma Scale
- Systolic arterial pressure
 - Not 90 mmHg
 - categories for systolic arterial pressure (60, 60–120, 120 mm Hg) was supported mainly by clinical observation
- Type of trauma
 - RTS coefficients must be separated for blunt and penetrating injuries
- is also supported by the inclusion of this variable in the TRISS
 Age
 - Increased mortality has been demonstrated as early as age 40 or 45 yrs
 - <60, >60

DISCUSSION

- Some variables do not included
 - Requirement for important fluid loading
 - Mechanical ventilation
 - Administration of catecholamines
- · Two hypothesis
 - the statistical weight has been outlined by the statistical weight of other variables
 - Those Important therapeutic interventions have a marked impact on the patient prognosis

DISCUSSION

- prehospital triage should not be limited to only one score whatever its accuracy
 - an algorithm based on these decision schemes and incorporating the MGAP score could be a useful solution
 - the MGAP score was able to clearly delineate patients with low, intermediate, and high risk of death

DISCUSSION

Limitation

- this score may not apply to pediatric patients
 MGAP score might be different in a paramedic-staffed
- the proportion of penetrating trauma (9%) was relatively low
- the procise role of the MGAP score in the global process of prehospital triage
- some variables were not taken into account in the predictive model
- secondary triage of MGAP scoring did not assess
- reproducibility of MGAP score did not assess
- Details of the Glasgow Coma Score were not available

CONCLUSIONS

- MGAP score will lead to an improvement in prehospital triage in trauma patients
- The MGAP score should probably be incorporated into future decision schemes proposed in paramedic-staffed and physician-staffed prehospital systems.

Reference

- http://www.trauma.org/
- http://en.wikipedia.org/wiki/Revised_Trau ma_Score