Journal meeting

Receptor: PGY 羅嘉榮 Supervisor: 洪子堯醫師 Date: 2010/03/29

Use of Sonography for Airway Assessment

J Ultrasound Med 2010: 29:79-85

Introduction

- Sonography of the upper airway may be a useful clinical methods of bedside airway assessment
- There is limited published data on sonography of the airway

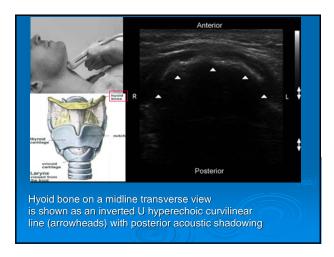
Objective

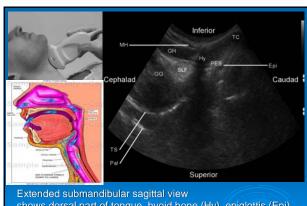
- To evaluate the feasibility of sonography in identifying airway anatomic structures from the floor of the mouth to the suprasternal notch in the anterior aspect of the neck
- To determine the optimal scanning technique in terms of transducer selection and orientation
- > To describe the sono anatomy of the airway

Materials and Methods

- Enrolled 24 healthy volunteers and performed a systematic sonographic examination of their airway
- Examination was performed by a certified sonographer with experience in sonography of the head and neck
- Placed supine with their head extended and neck flexed (the "sniffing" position)

- The ultrasound transducer was oriented in 1 of 3 ways:
 - (1)longitudinally in the midline (the sagittal view)
 - (2)longitudinally 2 cm lateral to the midline (the parasagittal view)
 - (3)transversely across the anterior surface of the neck (the transverse view)

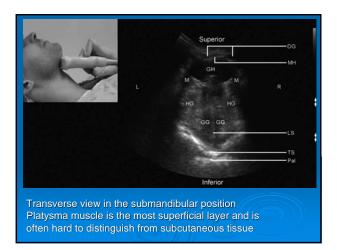

Results

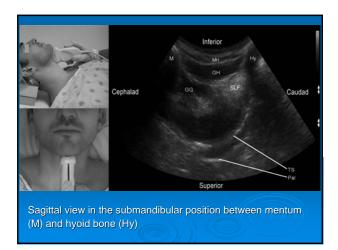

- > General Observations
- > Bony structures appeared as bright hyperechoic linear structures with a hypoechoic acoustic shadow underneath
- > Cartilaginous structures were homogeneously hypoechoic and their intraluminal surface was outlined by a bright air-mucosa interface
- Muscles and connective tissue membranes were also hypoechoic but with a more heterogeneous striated appearance
- > Glandular structures were homogeneous and mildly to strongly hyperechoic in comparison with adjacent soft tissues, depending on the fat content in the glandular parenchyma

> Any interface between the mucosa lining the upper airway tract and the air within it (an air-mucosa [A-M] interface) had a bright hyperechoic linear appearance

Hyoid Bone

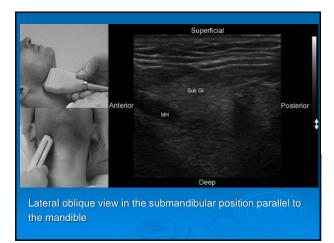
- > was a key landmark that separated the upper airway into 2 scanning areas: the suprahyoid and infrahyoid regions
- on sagittal view, the hyoid bone was visible as a narrow hyperechoic curved structure that cast an acoustic shadow (Figure 2)

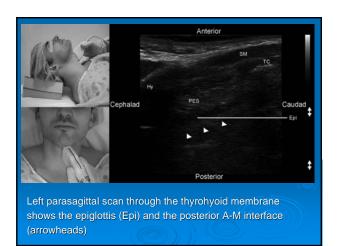




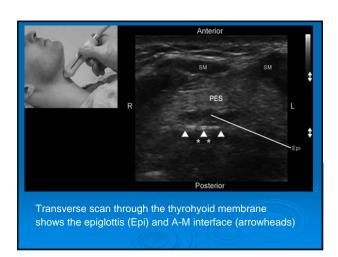
shows dorsal part of tongue, hyoid bone (Hy), epiglottis (Epi), and laryngeal inlet caudad to epiglottis

Suprahyoid Region

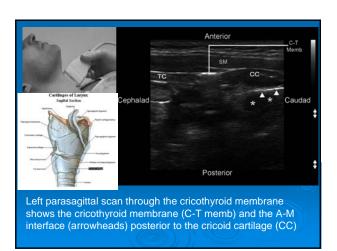

- The curved low-frequency transducer was preferred for imaging structures in the suprahyoid region
- > Floor of the Mouth
- -Several hypoechoic muscle layers were visible on the transverse view at the submandibular position (transducer placed midway between hyoid bone and mentum)

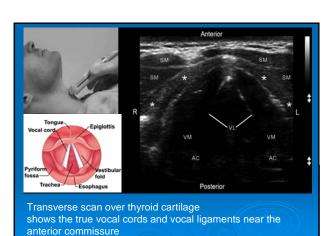

> Salivary Glands

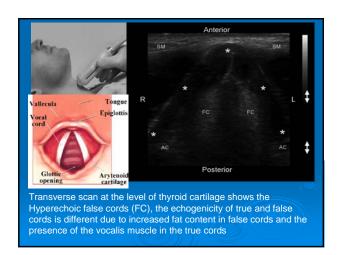
- -had a homogeneous hyperechoic appearance and were imaged best by placed in the submandibular area parallel to the mandible (Figure 5)
- -The submandibular gland was triangular and was located posterior to the sublingual glands and close to the angle of mandible

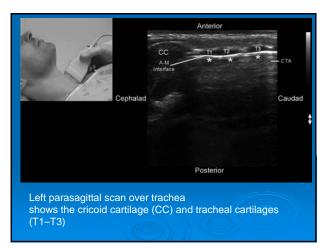

Infrahyoid Region

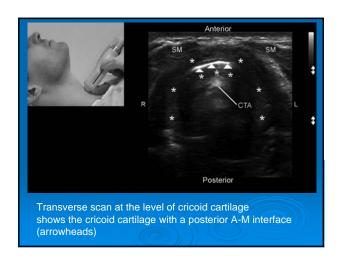
- The linear high-frequency transducer was most useful for detailed examination of the anatomic structures in the infrahyoid region
- Thyrohyoid Membrane
 runs between the caudal border of the hyoid bone and the cephalad border of the thyroid cartilage

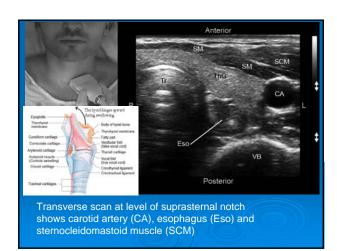

> Epiglottis


- -was visible through the thyrohyoid membrane as a hypoechoic curvilinear structure on the parasagittal and transverse views
- -Identification was facilitated by tongue protrusion and swallowing, during which it was visible as a discrete mobile structure inferior to the base of the tongue




> Thyroid Cartilage


- -was visible on sagittal and parasagittal views as a linear hypoechoic structure highlighted by the bright A-M interface at its posterior surface
- The vocal cords were best visualized through the thyroid cartilage



Discussion

- Able to successfully visualize all of the relevant anatomic structures of the upper airway on sonography
- Clinical application of sono for upper airway with potential utility in diagnosis (eg: laryngeal abnormalities and swallowing abnormalities and identification of endotracheal tube placement)

Confirmation of endotracheal intubation by combined ultrasonographic methods in the emergency department

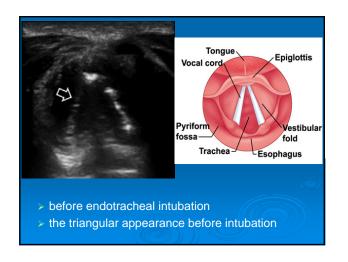
Emergency Medicine Australasia (2009) 21, 293–297

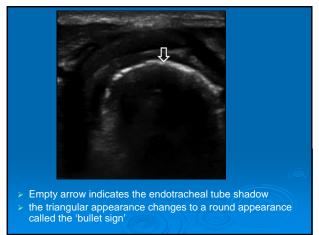
Introduction

- There is currently no entirely reliable method to verify the placement of the ETT
- Primary methods :
- -direct visualization of the vocal chords
- -monitoring chest rising after intubation and auscultation of both lungs

Secondary methods :

- -detection of end-tidal carbon dioxide levels
- -use of an esophageal detector device (EDD)
- -chest X-ray
- -sono
- -capnography


Objectives


to investigate whether the combined use of transcricothyroid membrane US and ultrasonographic evaluation for pleural sliding is useful for verifying endotracheal intubation in the ED

Methods

- > A prospective clinical trial in the ED from January to July 2008
- All 30 patients enrolled due to severe airway problems
- A linear probe placed horizontally over the cricothyroid membrane during the intubation process (dynamic phase)
- > confirmed by ultrasonographic lung sliding

- ultrasonographic lung-sliding assessment for pleural movement
- by placing the probe horizontally over the second intercostal space on the chest
- both pleural movement of parietal and visceral pleura on the chest
- ➤ ER physician confirmed the correct placement of the tube via auscultation and the use of an end-tidal CO2 detector

Results

> The initial ratio of esophageal-to-endotracheal intubation was 3:27

Transcricothyroid membrane ultrasonography	True positive	True negative
Bullet sign (+)	26	0
Bullet sign (-)	1	3
Lung-sliding assessment		
Lung-sliding (+)	27	0
Lung-sliding (-)	0	3

	Sensitivity	Specificity	PPV	NPV
Transcrico- thyroid membrane	96.3%	100%	100%	75%
Lung sliding	100%	100%	100%	100%

 A number of authors demonstrated both highly sensitive and accurate findings

Conclusions

The combination of transcricothyroid membrane US and lung-sliding assessment is an appropriate verification method for patients who require intubation in the ED even the patients presented with airway anatomy abnormalities or chest trauma

