

Introduction

- Therapeutic hypothermia is used in neuroprotection following cardiac arrest due to VT and VF.
- Hypothermia is known to cause potentially arrhythmogenic effects.
 - Hypothermia → QTc prolongation → induce polymorphic VT and VF → refibrillation?
- Aims: To investigate the effect of therapeutic hypothermia on the QTc interval.

Methods

- ROSC → TH at 32 ~ 34 °C for 24hrs
- 設備: Laerdal Medicool kit
- Check K and Ca level
 - during hypothermia and within 24hrs before and after hypothermia
- ECG: pre-TH, during TH, post-TH
- Statistical analysis: Pearson's correlation coefficient
 - PPC value: -1 ~ 1

Case Reports							
	OHCA的原因	ROSC後的 ECG	Management				
49M	VT	Sinus rhythm with T inversion in lateral leads	ICD				
51M	STEMI→VF	New LBBB	ICD				
65M angina	Non-STEMI → VF	Anterior wall Q-waves	Amiodarone for 24hrs, cardiogenic shock → death				
59F	Chest pain →VF	New LBBB	Thrombolysis for STEMI, TH, inotropic support; intractable VF → death				

Results - I

- Relationship between temperature and QTc
 - A significant increase in the QTc was seen in each of these 10 ECGs.
 - All four patients had normal QTc values prior to hypothermia and the QTc returned back into the normal range

Patient	Pre-TH QTc 1	QTc 1 during TH	QTc 2 during TH	QTc 3 during TH	Post-TH QTc 1
1	430 ms	518 ms (+24.5%)	565 ms (+35.8%)	478 ms (+14.9%)	430 ms (20 h)
2	438 ms	442 ms (+3.1%)	463 ms (+5.7%)		410 ms (28 h)
3	434 ms	503 ms (+15.9%)	491 ms (+13.1%)		387 ms (69 h)
4	427 ms	503 ms (+17.8%)	517 ms (+21.1%)	505 ms (+18.2%)	N/A

Results - II • Temperature ↓ → QTc prolongation ↑ • Clear negative correlation: PCC value - 0.71 • Patient 1: K 3.3 mmol/L prior to cooling Office prior to cooling Office prior to disperse to cooling Office prior to cool

Discussion - I

- Hypothermia is known to cause numerous potentially arrhythmogenic cardiovascular and electrophysiological effects

 - Atrial fibrillation with slow ventricular rate.
 The Presence of J-waves (Osborn waves).
 - Bradycardias, including junctional and even asystole.
 Prolongation of PR, QRS, and QTc intervals

 - Premature ventricular beats, VT, and VF.
 - The effect of hypothermia on success of defibrillation is less clear.
 - Electrophysiological changes in hypothermia are similar to those is ischaemia.
 - Reduced efficacy of inotropic drugs and antiarrythmics
 - Serum hypokalemia and hypomagnesemia.

Discussion - II

- 6 ECG in our series showed QTc >500 ms
 - QTc prolongation is itself a cause of polymorphic VT and VF
- Amiodarone is the most used antiarrythmic drug in VT and VF.
 - amiodarone has been shown to cause torsades de point due to QTc prolongation

Discussion - III

- There are no guidelines on ECG monitoring during TH.
 - Guidelines on ECG monitoring during TH are required.
- Temporary pacing can be performed in the treatment of resistant VT.