American Instruct of Emergency Medicine 32 (2014) 24-2 #### American Journal of Emergency Medicine journal homepage: www.elsevier.com/locate/ajem Original Contribution Jolt accentuation of headache and other clinical signs: poor predictors of meningitis in adults $^{\dot{m},\dot{m}\dot{m}}$ Jolene H. Nakao, MD, MPH *, Farrukh N. Jafri, MD a.*, Kaushal Shah, MD b, David H. Newman, MD b * Department of Emergency Medicine, St Luke's-Rossevelt Hospital Center, New York, NY, USA. * Department of Emergency Medicine, Mount Sinul School of Medicine, New York, NY, USA. Reporter: Intern 黃郁芸 Supervisor: F2 朱健銘 103.07.15 #### Incidence in 1986 and 1995 of Bacterial Meningitis and Total Invasive Disease. Table 3, Incidence in 1986 and 1995 of Bacterial Meningitis and Total Invasive Disease. | PATHOGEN | Bacterial Meningitis | | | Total Invasive Disease | | | |--------------------------|---------------------------------|------|-------------------|---------------------------------|------|-------------------| | | 1986* | 1995 | PERCENT
CHANGE | 1986* | 1995 | PERCENT
CHÂNGE | | | cases per 100,000
population | | | cases per 100,000
population | | | | Haemophilus influenzae | 2.9 | 0.2 | - 94 | 5.6 | 1.8 | - 68 | | Streptococcus pneumoniae | 1.1 | 1.1 | +4 | 15.0 | 261 | +74 | | Neisseria meningitidis | 0.9 | 0.6 | -33 | 1.3 | 1.3 | 0 | | Group B streptococcus | 0.4 | 0.3 | -25 | 3.7 | 8.1 | +119 | | Listeria monocytogenes | 0.2 | 0.2 | -5 | 0.7 | 0.5 | -24 | *Data are from Wenger et al. During 1986, laboratory audits for invasive disease due to S. pnesmoniae and group B streptococous were limited to certain areas.3 #### In-Hospital Mortality Rates According to Pathogen. | ORGANISM | No. or
Erespens | CASE FATALITY RATE | | | |-------------------------------------|--------------------|------------------------|-------|--| | | | MENINGITIS-
RELATED | TOTAL | | | | | percent | | | | Strep. pneumoniae | 120 | 25 | 28 | | | Gram-negative bacilli | 86 | 23 | 36 | | | N. meningitidis | 40 | 10 | 10 | | | Streptococci | 36 | 17 | 25 | | | Enterococcus | 4 | 25 | 50 | | | Stoph, aureus | 36 | 28 | 39 | | | L. monocytogenes | 34 | 21 | 32 | | | H. influenzae | 19 | 11 | 11 | | | Mixed bacterial species | 18 | 39 | 44 | | | Coagulase-negative
staphylococci | 16 | 0 | 0 | | | Other* | 12 | 0 | 8 | | | Culture negative | 72 | 7 | 10 | | | All causes | 493 | 19 | 25 | | | 1962-1970 | 172 | 21 | 24 | | | 1971-1979 | 186 | 18 | 26 | | | 1980-1988 | 135 | 17 | 24 | | *Other organisms were as follows: anaerobes (4 episodes), propionibacteria (2), diphtheroids (2), micrococci (2), seisseria species (1), and Cam- | Physical sign | Method of elicitation | Positive test | |---|--|---| | Nuchal rigidity | With the patient in the supine position, the resident gently flexed the neck, asking the patients to touch their chin to sternum | Resistance to flexion | | Jolt accentuation of
the patient's
headache | The resident asked the patients to turn their heads horizontally at a frequency of 2–3 rotations per second | Worsening of the base line headache | | Kernig's sign | With the patient in the supine position, the resident lifted the
knee in flexed position until maximal hip flexion was obtained.
The leg was extended at the knee and resistance was checked | Resistance to extension at the
knee to >135° or pain in the lower
back or posterior thigh | | Brudzinski's sign | With the patient in the supine position, the resident flexed the neck, and looked for flexion of both the lower limbs | Flexion of the knees and hips | # Objective - Assess sensitivity and specificity of clinical signs in predicting CSF pleocytosis - Assess diagnostic accuracy of physician's suspicion of meningitis ### Method - 2 inner city academic ER - St Luke's Hospital and Roosevelt Hospital in Manhattan, New York (annual patient census 190,000) - January 1, 2006 to December 31, 2009 - Inclusion: >=18 y/o + LP d/t suspected meningitis Exclusion: altered mental status, prisoner status (inability to consent) ### Method - by trained assistant: 8AM to midnight on university based calendar (60% of days annually) - LP tray standby-> informed consent + physician interview (age, sex, symptoms, signs, suspicion of meningitis: either>50% or otherwise) - \bullet CSF pleocytosis = WBC count >= 5cells/ HPF in 4^{th} tube, with ratio of RBC/WBC <700 - Stata version 10 ### Result Table 1 Demographic characteristics, subjects receiving LP | Characteristics | All patients | | |-----------------------------------|-----------------|--| | Age | | | | Age (y), mean (range) | 40.2 (18-88) | | | No. of patients ≥60 years old (%) | 28/230 (12.2%) | | | Sex | | | | Male | 99/230 (43.0%) | | | Female | 131/230 (57.0%) | | | Ethnicity | | | | White | 82/230 (35.6%) | | | Black | 70/230 (30.4%) | | | Hispanic | 36/230 (15.7%) | | | Other/unknown ^a | 42/230 (18.3%) | | ^a Patients who during registration chose not to identify themselves by race. ### Result | | All (n = 230) | No pleocytosis
(n = 183) | Pleocytosis
(n = 47) | | |--|-----------------|-----------------------------|-------------------------|------| | Clinical characteristics | | 15.000.000.000.000 | 11.211.12.111 | 22.5 | | Headache | 197/230 (85.71) | 154/183 (84.2%) | 43/47 (91.5%) | .20 | | Reported fever | 90/230 (39.1%) | 76/183 (41.5%) | 14/47 (293%) | .11 | | Temperature ≥100.4°F | 56/223 (25.1%) | 49/176 (27.8%) | 7/47 (14.9%) | .09 | | Reported River or measured temperature ≥ 100.4°F | 90/230 (39.1%) | 76/183 (41.5%) | 14/47 (298%) | .11 | | Tolt accentuation | 37/197 (18.8%) | 29/154 (18/23) | 9/43 (20.91) | .00 | | Kernig sign | 6/229 (2.6%) | 5/182 (2.7%) | 1/47 (2.13) | 1.00 | | Brudzinski sign | 5/229 (2.2%) | 4/182 (2.2%) | 1/47 (2.1%) | 1.00 | | Nuchal rigidity | 43/229 (18.8%) | 37/182 (20.3%) | 6/47 (12.8%) | .30 | | Focal neurologic deficit | 9/229 (3.9%) | 8/182 (44%) | 1/47 (2.18) | .00 | | Vorsiting | 30/229 (13.1%) | 28/182 (15.4%) | 2/47 (4.3%) | .05 | | Kash | 8(229 (3.5%) | 7/182 (3.8%) | 1/47 (2.13) | 1.00 | | Physician suspicion | | | | | | Bacterial meningitis | 130(230 (56.51) | 109/183 (59.6%) | 21/47 (44.7%) | .07 | | CSF results | | | | | | WIRC count, mean WIRCs/HPF | 26.9 (n = 230) | 0.7 (n = 183) | 129.0 (n = 47) | .00 | | WRC count, median WRCs/HPF | 1 | 0 | 44 | - | | Clocose level, mean mg/dl. | 64.2 (n = 228) | 64.16 (n = 181) | 60.49 (n = 47) | .15 | | Glacose level, median mg/dl. | 61 | 61 | 58 | 4.7 | | Protein level, mean mg/dl. | 49.8 (n = 229) | 42.87 (n = 182) | 76.77 (n = 47) | .00 | | Protein level, median meidli. | 42 | 39 | 66 | 233 | | Culture growth positive | 8/230 (3%) | 5/183 (33) | 3/47 (63) | .21 | ## Result | | Sensitivity
(0.95 CI) | Specificity
(0.95 CI) | LR+ | LR- | |------------------------------------|--------------------------|--------------------------|-----|-----| | Headache (n = 230) | 91% (88-95) | 16% (11-21) | 1.1 | 0.5 | | Fever (n = 230) | 30% (24-36) | 58% (52-65) | 0.7 | 1.2 | | Jolt accentuation (n = 197) | 21% (15-27) | 82% (76-87) | 1.2 | 1.0 | | Kernig sign (n = 229) | 2% (0-4) | 97% (95-99) | 0.8 | 1.0 | | Brudzinski sign (n = 229) | 2% (0-4) | 98% (96-100) | 1.0 | 1.0 | | Nuchal rigidity (n = 229) | 13% (8-17) | 80% (74-85) | 0.6 | 1.1 | | Focal neurologic deficit (n = 229) | 2% (0-4) | 96% (93-98) | 0.5 | 1.0 | | Vomiting (n = 229) | 4% (2-7) | 85% (80-89) | 0.3 | 1.1 | | Rash (n = 229) | 2% (0-4) | 96% (94-99) | 0.6 | 1.0 | | Observicion exercicion (n - 200) | 4491 (21, 503) | 409 (33-47) | 0.8 | 1.4 | $LR + = \frac{\text{sensitivity}}{1 - \text{specificity}} \qquad LR + = \frac{\Pr(T + |D +)}{\Pr(T + |D -)}$ $LR - = \frac{1 - \text{sensitivity}}{\Pr(T - |D -)}$ $LR - \frac{\Pr(T - |D +)}{\Pr(T - |D -)}$ Moderate pleocytosis = WBC >= 100 cell/ H #### Discussion 2014, prospective, ED No single symptom/sign as strong predictor. Constellation of s/s remains possible. ### Limitation - Research assistant time frame - Physican bias ### Conclusion - Jolt accentuation was poorly predictive of pleocytosis. - Other symptoms/ signs are inconsistent predictor of presence or absence of meningitis. ## **Appraise** - 12 item CASP checklist for diagnostic questions - Clear question? - Diagnostic test appropriate? - All patient get diagnostic test? - Result influenced by the method of diagnostic test? - Disease clearly described? CorDiagnostic test well followed? norbidity/ differential - Result presented with Sn, Sp, LR? How sure inspect of the result? Cl - Can result be applied to our population? Age/sex/ethnicity Can test performed in our population? Skill/cost Could result change patient management? Improve well-being? - What is the impact of using the test on our population? ### Level of evidence Randomized controlled trial (RCT) Meta-analysis of randomized trials with homogeneous results Meta-analysis of Level 2 studies or Level 1 studies with inconsistent results Level 3 Retrospective cohort study Case-control study Meta-analysis of Level 3 studies Level 4 Case series Level 5 Case report (a report of a single case) Expert opinion Personal observation ### Introduction • Europe guideline: pre-test probability with Revised Geneva Score (RGS): low to intermediate risk - -> d-dimer test (+) - -> CTPA , V/Q scan Age of other than 6 by consolidation and control of the Pulmonary Embolism Rule-out Criteria (PERC): high negative predictive value ### Pulmonary Embolism Rule-out Criteria (PERC) - Defined PERC as positive, if any positive of the following: - age above 49 years - ⁻ pulse rate above 99 beats per minute - $^{\mbox{\tiny $-$}}$ pulse oxymetry less than 95% on room air - unilateral leg swelling - history of hemoptysis - ⁻ prior diagnosis of PE or deep vein thrombosis - recent surgery or trauma in the last 4 weeks - exogenous estrogen intake ### Objective - Rate of PE with D-dimer testing in PERC-negative patients - Adverse events associated with: invasive imaging, anticoagulation treatment and unnecessary hospitalization for further testing ## Method-population and setting - 4 urban academic emergency departments in Paris metropolitan area (annual census of 45000 to 55000 ED visits each) - from January 1, 2012, a 12-month period ### Method-Inclusion/Exclusion Criteria Inclusion criteria: all patient that had D-dimer testing Exclusion criteria: - PERC positive - ⁻ RGS intermediate to high - incomplete chart PERC not available - ⁻ D-dimer test for other suspicion: DVT, septic coagulation screen... #### Method-Data collection Chart abstraction according to the recommendation of Gilbert et al.: - Definition of every variable recorded - Explicit protocols and criteria for selection and inclusion, or exclusion of screened patients - Training of abstractors before the study starts with practice medical charts and examples - Regular meeting between abstractors and study coordinators during the study, and after completion of data collection at each site - Blinding initial chart reviews to the tested hypothesis, as PERC score was calculated prior to the collection of diagnosis #### Method-Outcome - D-dimers analyzed using ELISA with normal range under 500 ng/mL - CTPA or V/Q scan interpreted by senior radiologist + second senior radiologist blinded to PERC score - PE was diagnosed by one chart abstractor + principal investigator - Cohen κ 1.0 = perfect agreement ### Result • 223287 ED visits 49 with no suspicion PE Table 2 Table 3 Table 3 Table 3 Table 3 Table 4 Table 4 Table 4 Table 4 Table 4 Table 4 Table 5 Table 4 5 confirmed PE 4301 patients with 2791 with PERC score > 0 391 incomplete charts 13 started anticoagulation treatment with unnecessary admission ### Conclusion - D-dimer testing for PERC-negative patients led to 15% of irradiative imaging studies, for a rate of newly diagnosed PE of 0.5%, similar to prevalence - The mortality rate of newly diagnosed PE was very low (0-1%) Further D-dimer testing for PERC negative patients was not suggested #### Discussion - Kline et al: High sensitivity and negative predictive value - Hugli O et al: pulmonary embolism rule-out criteria (PERC) rule does not safely exclude pulmonary embolism. J Thromb Haemost JTH 2011;9:300-4. #### Discussion - Retrospective = loss of follow up = no information on how many false-negative patients were discharged - \bullet Sensitivity, specificity and negative predictive values could not be calculated - Objective of this study is to determine the added value rather than sensitivity and specificity of the test # **Appraise** - 12 item CASP checklist for cohort questions - Clear question? - Diagnostic test appropriate? - All patient get diagnostic test? - Result influenced by the method of diagnostic test? - Disease clearly described? Comorbidity/ differential - Diagnostic test well followed? - How sure inspect of the result? CI - Can result be applied to our population? Age/sex/ethnicity - Can test performed in our population? Skill/cost - Could result change patient management? Improve well-being? - What is the impact of using the test on our population? ## Level of evidence Randomized controlled trial (RCT) Meta-analysis of randomized trials with homogeneous results Prospective comparative study (therapeutic) Meta-analysis of Level 2 studies or Level 1 studies with inconsistent results Retrospective cohort study Case-control study Meta-analysis of Level 3 studies Level 4 Case series Level 5 Case report (a report of a single case) Expert opinion Personal observation ### Question • Newly diagnosed PE 0.5%, similar to prevalence?