Diagnostic Approach to Pediatric Emergencies

新光醫院急診醫學科 VS 吳柏衡 102.08.08

Aims

- Pediatric Assessment
- Respiratory Emergencies
- Shock
- Cardiac Rhythm Disturbances
- Emergency Procedures

Pediatric Assessment

Pediatric assessment

- Initial assessment
 - PAT
 - ABCDE
- Cardiovascular assessment
 - Vital signs
 - End-organ perfusion

Appearance Work of Breathing Circulation to skin

Appearance

- Tone
- Interactiveness
- Consolability
- Look/Gaze
- Speech/Cry

Work of Breathing

- Abnormal airway sounds
- Abnormal positioning
- Retractions
- Nasal flaring
- Head bobbing

Case Study 1: "Cough, Difficulty Breathing"

- One-year-old boy presents with complaint of cough, difficulty breathing.
- Past history is unremarkable. He has had nasal congestion, low grade fever for 2 days.

Circulation to Skin Pallor Mottling Cyanosis

Questions

What information does the PAT tell you about this patient?

What is your general impression?

General Impression

- Stable
- Respiratory distress
- Respiratory failure
- Shock (compensated/decompensated)
- CNS or Endocrine dysfunctions
- Cardiopulmonary failure/arrest

Case Progression/Outcome

- Initial assessment: Respiratory distress with upper airway obstruction
- · Initial treatment priorities:
 - Leave in a position of comfort.
 - Obtain oxygen saturation.
 - Provide oxygen as needed.
 - Begin specific therapy.

Initial assessment-ABCDE

- Airway
- Breathing
- Circulation
- Disability
- Exposure

Airway

- Manual airway opening maneuvers: Head tiltchin lift, jaw thrust
- Suction: Can result in dramatic improvement in infants
- Age-specific obstructed airway support:
 - <1 year: Back blow/chest thrust
 - >1 year: Abdominal thrust
- Advanced airway techniques

Breathing: Respiratory Rate

Rate

Age	Respiratory
Infant	30 to 60
Toddler	24 to 40
Preschooler	22 to 34
School-aged child	18 to 30
Adolescent	12 to 16

• Slow or fast respirations are worrisome.

Breathing: Auscultation

- Listen with stethoscope over midaxillary line and above sternal notch
 - Stridor: Upper airway obstruction
 - Wheezing: Lower airway obstruction
 - Grunting: Poor oxygenation; pneumonia, drowning, pulmonary contusion
 - Crackles: Fluid, mucus, blood in airway
 - Decreased/absent breath sounds: Obstruction

Circulation: Heart Rate

Age Normal Heart Rate

Infant 100 to 160
Toddler 90 to 150
Preschooler 80 to 140
School-aged child 70 to 120

Adolescent 60 to 100

Circulation

- Pulse quality: Palpate central and peripheral pulses
- Skin temperature: Reverse thermometer sign
- Capillary refill
- Blood pressure: Minimum BP70 + (2 X age in years)

Hypotension (SBP, mmHg)

- Newborn (0-28 days): < 60
- Infant: < 70
- Child (1-10): < 70 + (age x 2)
- Child (> 10): < 90

Pediatric Vital signs

	HR	RR	ВР
0-1 y/o	100-160	30-60	60-70
1-6 y/o	~140	20-40	70 + Age*2
6-12 y/o	~120	15-30	70 + Age*2
>12 y/o	60-100	20	> 90

Disability

- Quick neurologic exam
- AVPU scale:
 - Alert
 - Verbal: Responds to verbal commands
 - Painful: Responds to painful stimulus
 - Unresponsive
- (Pediatric) Glasgow Coma Scale

Exposure

- Proper exposure is necessary to evaluate physiologic function and identify anatomic abnormalities.
- Maintain warm ambient environment and minimize heat loss.
- Monitor temperature.
- Warm IV fluids.

End-organ perfusion

- Skin: temperature, color, capillary refilling time
- Brain: level of consciousness
- Kidney: urine output

Respiratory Emergencies

Case Study 1

- Mother of 13-month-old boy found him choking and gagging next to container of spilled nuts.
- Paramedics noted appearance is alert; work of breathing is increased with audible stridor; subcostal retractions; color is normal.

Initial Assessment (1 of 2)

PAT:

 Normal appearance, abnormal breathing, normal circulation

Vital signs:

- HR 160, RR 60, BP 88/56, T 37.1°C, O_2 sat 93%, Wt 11 kg

Question

What is your general impression of this patient?

General Impression

- Respiratory distress:
 - Upper airway obstruction
 - Foreign body aspiration

What are your initial management priorities?

Initial Assessment (2 of 2)

- A: Stridor
- B: Tachypneic with retractions, reduced tidal volume
- C: Color is normal, skin is warm and dry, pulse is rapid but strong and regular.
- D: Alert with no focal neurologic signs; GCS 15
- E: No obvious signs of injury

Management Priorities

- Patient is brought to monitored bed and allowed to remain in position of comfort.
- Supplemental oxygen is provided.
- IV access is deferred to avoid agitation.
- Specialists are contacted.

Your First Clue: Foreign Body Aspiration

- A history of choking is the most reliable predictor of FB aspiration.
- Other signs and symptoms include:
 - Upper airway: Stridor, respiratory or cardiopulmonary arrest
 - Lower airway: Coughing, wheezing, retractions, decreased breath sounds, cyanosis

Discussion: Foreign Body Aspiration

- Background:
 - 150-300 fatalities in young children each year.
 - 2/3 of cases are in children 1-2 years of age.

Background: Foreign Body Aspiration (1 of 2)

- Food items are the most commonly aspirated FB.
- Balloons are the most common FB to result in death.

Background: Foreign Body Aspiration (2 of 2)

- Foreign objects can be lodged in the upper or lower airway, or esophagus.
- Differences in the pediatric airway make evaluation and management of foreign body aspiration challenging.

Diagnostic Studies

- Radiology
 - Radiopaque FBs are seen in about 15% of cases.
 - Other findings seen in lower airway FB aspiration on chest radiograph
 - Air trapping/hyperinflation
 - Pulmonary consolidation
 - Barotrauma

Radiology

 In this chest radiograph, FB aspiration is suggested as the left side of the chest is hyperlucent from air trapping.

Management (1 of 6)

- Upper airway FB:
 - If patient is able to cough or speak:
 - · Leave in a position of comfort.
 - Provide supplemental oxygen.
 - Consider heliox therapy
 - Priority to get patient to operating room for removal

Management (2 of 6)

- Upper airway:
 - With severe partial or complete airway obstruction, management depends on age.
 - Management options can be divided into basic life support (BLS) and advanced life support (ALS).

Management (3 of 6)

- BLS:
 - Infant: 5 back blows/5 chest thrusts

Management (4 of 6)

BLS:

-Child: 5 abdominal thrusts

Management (5 of 6)

- ALS:
 - Laryngoscopy and remo Magill forceps

Management (6 of 6)

- Lower airway FB:
 - Heliox may be tried as a temporizing measure prior to removal for patients in severe respiratory distress.
 - Bronchoscopy and removal of FB in operating room
 - FB retrieval rate approaches 100%.

Case Progression/Outcome

 Patient was taken to operating room where rigid bronchoscopy was performed and a peanut was removed from the subglottic airway.

Case Study 2

- 15-month-old boy with a history of cold for 2 days develops a barking cough.
- He tracks you with his gaze as you approach.
- He has stridor at rest, retractions, and has cyanosis around his lips.

Initial Assessment (1 of 2)

PAT:

 Normal appearance, abnormal breathing, normal circulation

Vital signs:

– HR 180, RR 60, T 38.4°C, $\rm O_2$ sat 91% on blow-by oxygen, Wt 10 kg

Question

What is your general impression of this patient?

General Impression

- Respiratory distress:
 - Upper airway obstruction
 - Croup

What are your initial management priorities?

Initial Assessment (2 of 2)

- A: Stridor at rest
- **B:** Tachypnea, retractions
- Slight cyanosis around the lips, otherwise color is normal, capillary refillseconds, skin warm and dry, pulse strong and rapid
- D: Alert, GCS 15
- E: No signs of injury, no rash

Management Priorities

- Leave patient in a position of comfort.
- Place patient on cardiorespiratory monitor.
- Administer nebulized epinephrine.
- Administer corticosteroids IM.

Your First Clue: Croup

- Prodromal symptoms mimic upper respiratory infection.
- Fever is usually low grade (50%).
- Barky cough and stridor (90%) are common.
- Hoarseness and retractions may also occur.

Background: Croup

- Croup, or laryngotracheobronchitis, is common in infants and children.
 - Affects children 6 months to 6 years
 - Incidence 3-5/100 children
 - Peak in second year of life
 - Seasonal: Occurs in fall and early winter
 - Viral etiology most common: Parainfluenza virus

Diagnostic Studies

- The diagnosis of croup is made clinically.
- Routine laboratory or radiological studies are not necessary.
- Plain radiography of neck performed on cases in which diagnosis was in question may show a Steeple sign.

Steeple Sign

Differential Diagnosis: What Else?

- Epiglottitis (rare)
- Bacterial tracheitis
- Peritonsillar abscess
- Uvulitis
- Allergic reaction
- Foreign body aspiration
- Neoplasm

Management Options: Croup (1 of 3)

- Humidified oxygen
 - Theoretical benefit literature suggests NO significant benefit
- Steroids
 - Faster improvement with croup score, decrease in endotracheal intubation, and shorter hospital stays

Management Options: Croup (2 of 3)

- Steroids
 - No significant difference in outcome between dexamethasone and budesonide
 - Dexamethasone
 - Doses 0.15-0.6 mg/kg PO or IM are effective.
 - Budesonide
 - Dose 2mg/2mL nebulized

Management Options: Croup (3 of 3)

- Epinephrine
 - Begin epinephrine for signs of moderate to severe respiratory distress.
 - Racemic 0.05 mL/kg (max 0.5 mL)
 - L-epinephrine (1:1,000 solution) 0.5 mL/kg (max 5 mL)
 - Observe patients receiving epinephrine for a minimum of 3 hours before discharge.

Case Progression/Outcome

- 15-month-old patient received inhaled epinephrine and dexamethasone IM.
- He was observed in the ED for 3 hours.
- At the time of discharge, his respiratory rate was 40 breaths/min and O₂ sat was 97% on room air.

Shock

Shock

 Inadequate tissue perfusion (delivery of oxygen and nutrients) to meet the metabolic demands of the body.

S/S

- Early S/S: Tachypnea, Tachycardia, Mottling or pallor skin, Prolonged capillary refilling time
- Late S/S: Altered consciousness, Hypotension, Respiratory failure, Oligouria, Cyanosis

Hypovolemic Shock

- Fluid loss:
 - Diarrhea, vomiting, anorexia, diuresis
 - Hemorrhage
- Resuscitation:
 - Fluid replacement
 - NS or LR 20 mL/kg bolus infusions, reassess, repeat as needed
 - Blood transfusion for excessive hemorrhage

Cardiogenic Shock

- Poor myocardial contractility or impaired ejection:
 - Cardiomyopathy, congenital heart disease, myocarditis, congestive heart failure, arrhythmia
- Resuscitation:
 - Fluid bolus (10 mL/kg) and reassess
 - Inotropes, pressors (e.g., dopamine, dobutamine, epinephrine)

Distributive Shock

- Inappropriate vasodilation with maldistribution of blood flow:
 - Anaphylactic shock, spinal cord injury, septic shock
 - "Warm shock"
- Resuscitation:
 - Vasoconstrictors (e.g., epinephrine)
 - Anaphylaxis treatment
 - Spinal cord injury treatment
 - Sepsis treatment

Septic Shock

- Elements of distributive shock, cardiogenic shock and hypovolemic shock:
 - Inappropriate vasodilation with a maldistribution of blood flow
 - Myocardial depression
 - Relative hypovolemia
- Resuscitation:
 - Fluid bolus
 - Pressors and inotropes
 - Antibiotics

Obstructive shock

- Tension pneumothorax/ Cardiac tamponade
- Resuscitation:
 - Fluid bolus
 - Emergency decompression

Compensated vs Decompensated

- Compensated:
 - Vital organs continue to be perfused by compensatory mechanisms.
 - Blood pressure is normal.
- Decompensated:
 - Compensatory mechanisms are overwhelmed and inadequate.
 - Hypotension, high mortality risk
- Aggressive treatment of early shock:
 - Halts progression to decompensated shock

7-month-old boy

- Diarrhea and vomiting x 24 hrs
- Fever
- Poor intake
- Fussier than usual
- Decreased urine output: 1 wet diaper in 12 h

What is general impression?

Compensated shock

Initial assessment-ABCDE

Airway: patent

 Breathing: tachypnea; no stridor or wheezing, no retraction → O2 delivery

Circulation: Cool; Capillary refilling time:
 3-4 seconds → IV & Monitor

Disability: alert

Exposure: no wound

Vital signs

 HR 200; BP 74/35; RR 40; BT 37.3°C; weight 6 kg

What is your differentiate diagnosis and management priorities?

Differentiate diagnosis

- Hypovolemic shock
- The common causes
 - Acute enterocolitis
 - Hemorrhagic shock by trauma
 - DKA with dehydration

Management Priorities

- ABCDE
- O2/ IV/ Monitor
- Isotonic fluid resuscitation
 - 20 mL/kg NS rapid bolus
 - Reassessment
- Obtain laboratory studies and cultures

Cardiac Rhythm Disturbances

Stable Versus Unstable

- Unstable rhythm require emergency therapy
 - Rhythm that may cause and deteriorate circulatory instability

Circulatory instability

- Compensated shock
- Decompensated shock (hypotension)
 - Poor end-organ perfusion
 - Altered consciousness
- Cardiopulmonary arrest

Assessment of cardiovascular function

- Assess ventilation, heart rate, end-organ perfusion, peripheral pulse, blood pressure
- Is cardiovascular instability present?
- Is CPR needed?

Rhythm groups by pulse rate

- Slow pulse rate = bradyarrhythmia
- Fast pulse rate = tachyarrhythmia
- Absent pulse= pulseless arrest = collapse rhythm

Definitions of rhythm groups

Rate	Infant	Child	
Fast	>220	>180	
Slow	<80	<60	

Assessment of cardiac rhythm groups

- Is the pulse rate slow, fast, or absent ?
- Is perfusion compromised?
- Are the ventricular complexes wide or narrow?
- Is there a diagnostic pattern to the ECG?

Potentially reversible causes of lifethreatening arrhythmia

- 6 H's
- 6 T's
- Hypoxemia
- Tamponade
- Hypovolemia
- Tension pneumothorax
- Hypothermia
- Tablets
- Hypo-/Hyperkalemia– Thrombosis (AMI)
- Hydrogen ion
- Thrombosis (PE)
- Hypo-/Hyperglycemia– Trauma

PEA 找原因

- 6H6T????
- 背不起來,怎麼辦? 誰來教我口訣?
- 兩心兩肺低氧高鉀酸藥威 > 口訣是考 試用跟唬濫用的(可以在十秒內講出來 ...)

- 臨床: 問病史 看聽敲(兩心兩肺) 毒抽血 超音波
- 但小孩有多少有CAD?(小心 kawasaki..), 誰家小孩 有pulmonary embolism? 沒有超音波誰敢戳 pericardial effusion, PEA怎麼聽distant heart sound? → 所以 只要考慮tension PTX!
- 創傷? 眼睛不會看啊! 會死的創傷 > internal bleeding, hemothorax, PTX→ 超音波!!
- Shaken baby syndrome? 先救活病人再說吧! 問 病史!!

- 低血氧? 還要你說! ETT 早就on 好了
- 低血容? 還要你說! IV NS full run, 超音波→ 輸血?
- 酸,高低鉀,低血糖 → 抽血!
- 毒物, 低體溫 → history
- 總結: PE(看聽敲) tension PTX

病史 - 毒 傷 溫

抽血-鉀糖酸

超音波 - 兩心兩肺 傷

Fast pulse- narrow ventricular complex- SVT vs ST

- ST
 - History compatible with ST (eg, fever, dehydration, pain)
 - P waves present/ normal
 - Heart rate often varies with activity
 - Infant: HR< 220 bpm
 - Child: HR< 180 bpm
- SVT
 - History incompatible with ST
 - P waves absent/ abnormal
 - Heart rate does not vary with activity
 - Infant: HR> 220 bpm
 - Child: HR> 180 bpm

Management of SVT

- Poor perfusion
 - Vagal manevers
 - Immediate electrical cardioversion (0.5-1J/Kg, up to 2J/Kg)
 - Chemical cardioversion (adenosine)
- Adequate perfusion
 - Vagal maneuvers
 - Vagar mariedvers
 Chemical cardioversion
 - Electrical cardioversion

Ventricular tachycardia

- Monomorphic VT
- Polymorphic VT (Torsades de Pointes)

Polymorphic VT

Management of monomorphic VT

- Poor perfusion
 - Synchronized cardioversion (0.5-1 J/Kg)

 - Use of pharmacologic agent
 Memodarone 5mg/kg IV over 20-60 mins
 Procanamide 15mg/kg IV over 30-60 mins
 Identify and treat the underlying cause
 Adequate perfusion
 - - Use of pharmacologic agent
 Amiodarone 5mg/kg IV over 20-60 mins
 Procanamide 15mg/kg IV over 30-60 mins
 Synchronized cardioversion (0.5-1 J/kg)
 Identify and treat the underlying cause

Management of polymorphic VT

- Synchronized cardioversion (0.5-1 J/Kg)
- $-MgSO_4$ 25-50 mg/ Kg, up to 2g
- Identify and treat the underlying cause (congenital condition, electrolyte imbalance, drug toxicity)

Pulseless Arrest

- Pulseless VT
- PEA
- Asystole

Emergency Procedures

- Endotracheal intubation (RSI)
- Defibrillation and Cardioversion
- Intraosseous access

Endotracheal intubation

- RSI
- SOAP-ME
- Tracheal tube size = 4 + age/4
- Tracheal tube depth at lip = 3 x TT size

Basic RSI

- Airway assessment
- Preoxygenation
- Optional adjunctive agents (atropine, lidocaine)
- Sellick maneuver (cricoid pressure)
- Paralyzing agent
- Sedative agent
- Intubation and confirmation

Adjunctive Agents

- Atropine anticholinergic
 - Probably useful in all children
 - Prevents bradycardia during intubation
 - Reduces oral secretions (e.g., ketamine)
- Lidocaine lowers intracranial pressure
 - Given IV
 - Might be beneficial in head trauma cases or when ICP elevation is suspected

Sedative Agents

- No perfect sedative
- All sedatives may cause cardiovascular compromise.
- Selection is dependent upon clinical conditions.
- To simplify things, consider etomidate to be "default" sedative.

Thiopental

- Onset: 30 to 40 secDuration: 10 to 30 min
- Benefits: Lowers ICP, lowers cerebral metabolism and oxygen demand, anticonvulsant
- Cautions: Myocardial depression. Giving this slowly reduces this adverse effect. Avoid in hypotension or patients in shock. May occasionally cause laryngospasm.

Midazolam

Onset: 1 to 2 minDuration: 20 to 30 min

- Benefits: Reversible, amnestic, anticonvulsant, less likely to cause myocardial depression
- Cautions: Variable dose to achieve unconsciousness. Titration is required, which is not suitable for RSI. RSI requires a single dose.

Ketamine

Onset: 1 minDuration: 30 min

- Benefits: Bronchodilator, sympathomimetic, less likely to cause myocardial depression.
- Cautions: Inject slowly to avoid vomiting; increases oral secretions (use atropine as an adjunctive agent), increases ICP, might cause emergence reactions

Etomidate

Onset: Less than 1 minDuration: 10 to 20 min

• Benefits: Lowers ICP, supports blood pressure

• Cautions: Myoclonic excitation (might resemble

seizures), immunosuppression

Sedative Selection

Hypotension: Etomidate

Status asthmaticus: Ketamine

with shock resuscitation.

 Head injury without hypotension: Thiopental or etomidate

 Unconscious in shock: Any agent may adversely affect circulation. Consider using no sedative or a low dose in conjunction

Paralyzing Agents

- Also called muscle relaxants
- Succinylcholine
 - Onset 30-60 sec, duration 3-8 min
 - Shorter duration, higher risk of adverse effects
- Rocuronium
 - Onset 1-3 min, duration 30-45 min
 - Longer duration, but less potential for adverse effects

Succinylcholine

- "Depolarizing" muscle relaxant
 - Depolarizes muscle first (causing "fasciculations"), then paralysis
 - Fasciculations may cause muscle pain and myoglobinuria, more common in muscular adults
- Higher risk of hyperkalemia, especially following burns and/or crush injuries
- Higher risk of malignant hyperthermia
- Fastest onset time, short duration (3-8 min) in case intubation is not achieved

Rocuronium

- "Nondepolarizing" muscle relaxant, no fasciculations.
- Other drugs in group: vecuronium, pancuronium, atracurium, mivacurium. Rocuronium has the fastest onset time and fewest adverse effects.
- Onset time is slower than succinylcholine, but in practice, intubation initiated at 60-90 sec after administration, slightly slower than succinylcholine.
- Longer duration (30-45 min) in case intubation is not achieved. Partially reversible with edrophonium.

Paralyzing Agent Selection

- Physician preference
- Onset time: Succinylcholine faster
- Duration: Succinylcholine shorter
- Adverse effects: Fewer with rocuronium
- Intubation conditions: Approximately the same

