

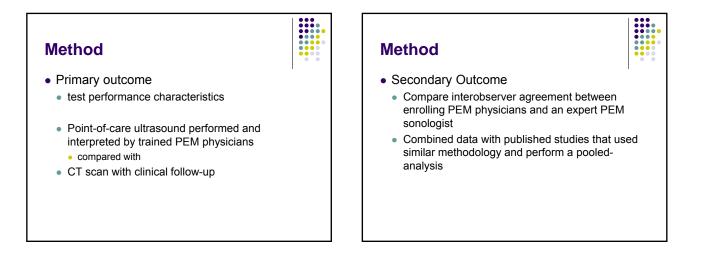

- Head trauma is one of the most common childhood injuries
- Skull fracture is associated with a 4X increased risk of intracranial injury
- The gold standard diagnostic test for skull fracture is CT
 - Radiation
 - Need sedation

- Point-of-care ultrasound is widely accepted as a diagnostic tool for use in the ER
- Ultrasound is well tolerated by children even in areas of injury
- The study's principal objective
 - Determine the test performance characteristics
 - Point-of-care ultrasound vs. CT scan
 - Diagnosis of skull fractures in children

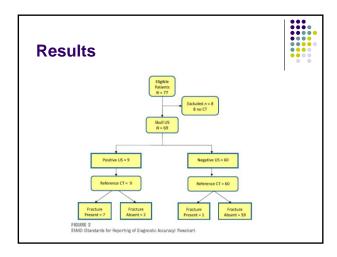
Method

- Study Design and Setting
 - Inclusion
 - Patients <21 years of age
 - With head injuries requiring CT scan for suspected fracture and/or intracranial injury
 - Exclusion
 - Completed radiologic studies
 - A confirmed skull fracture
 - An open fracture,
 - Urgent intervention was required

Method

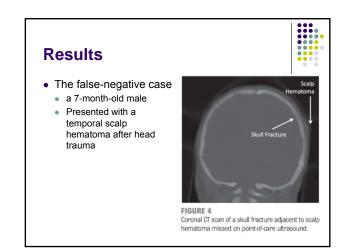

- All enrolling PEM attending and fellow physicians attended
 - a 30-minute didactic session to learn how to use ultrasound to evaluate the skull for fracture
 - a 30-minute hands-on practical session
- All study sonologists except for one were novices to musculoskeletal ultrasound at the start of the study

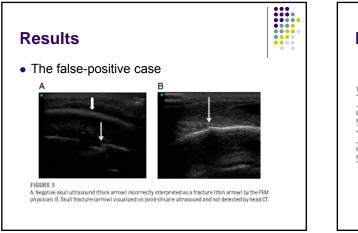
Method


- The transducer was placed over the area
 - Soft tissue swelling
 - Hematoma
 - Point of impact
 - Point of maximal tenderness
 - A PEM physician with expertise in ultrasonography (J.W.T.), who has >10 years of point-of-care ultrasound clinical and teaching experience reviewed all recorded ultrasound scans

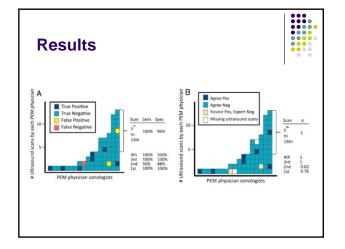
Method

• The gold standard for skull fracture was defined as "fracture" or "cortical irregularity" as documented in the attending radiologist's report of the head CT


Results		
• Sixty-nine patients with	TABLE 1 Patient Demographic Characteristics	·
a mean age of 6.4		n (%)
years were enrolled	Male	45 (65)
	Scalp hematoma	43 (62)
	Frontal	9 (13)
	Temporal	8 (12)
	Temporal and parietal	2 (3)
	Parietal	11 (16)
	Parietal and occipital	1 (1)
	Occipital	11 (16)
	Location not noted	1 (1)
	Loss of consciousness	9 (13)
	Vomiting	22 (32)
	GCS <15 or altered mental status	8 (12)
	Palpable fracture	4 (6)

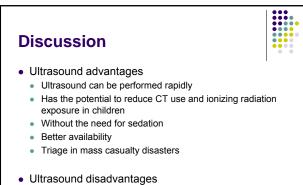


Results



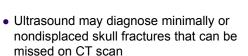
- Fracture was diagnosed by the enrolling sonologist in 9 patients
- 3 (4%) discordant results between point-ofcare ultrasound and radiographic imaging,
 - 1 falsenegative result
 - 2 false-positive results

TABLE 3 Test Performance Characteristics for Point-of-Care Ultrasound Diagnosis of Skull Fractures N Fractures, n (%) Sensitivity, % Specificity, % PPV Overall 69 8 (12) 88 (53–68) 96 (86–99) 0.78 (0.45–0.94) Novice sonologists 57 8 (14) 88 (55–68) 96 (86–99) 0.78 (0.45–0.94) Upper limit NPV LR+ LR- K Overall 0.98 (0.91–1.0) 21.4 (5.4–85.4) 0.13 (0.02–0.82) 0.85 (0.66–1.0) Novice sonologists 0.58 (0.88–1.0) 21.4 (5.4–85.4) 0.13 (0.02–0.82) 0.85 (0.66–1.0)	Result	S									
NPV LR+ LR- κ 0verall 0.58 (0.91-1.0) 26.7 (6.7-106.9) 0.13 (0.02-0.81) 0.88 (0.67-1.0)	Overall	N 69	Fractures, / 8 (12)		Sensitivity, 88 (53–98	%	Specificity, % 97 (89–99)	0.78	PPV (0.45-0.94)	Skull I	ractures
Overall 0.98 (0.91-1.0) 26.7 (6.7-106.9) 0.13 (0.02-0.81) 0.86 (0.67-1.0)	Novice sonologists	57	8 (14)	_	88 (53-98)	96 (86-99)	0.78	(0.45-0.94)	-	
			NPV		LR+		LR-		κ		
										_	



Res	ults	5				
		int-of-Care Ultrasound fo	-			
Study (Reference)	N	Fractures, n (%)	Sensitivity, %	Specificity, %	LR+	LR-
Weinberg et al (15)	21	2 (10)	100 (20-100)	100 (79-100)	Infinity (2.1-infinity)	0 (0-2.15)
Riera and Chen (19)	40	5 (13)	60 (17-93)	94 (79-99)	10.5 (2.3-48.2)	0.42 (0.15-1.25)
Parri et al (18)	55	35 (64)	100 (88-100)	95 (75-100)	13.8 (3.0-64.6)	0.02 (0-0.24)
Rabiner et al	69	8 (12)	88 (53-98)	97 (89-99)	26.7 (6.7-106.9)	0.13 (0.02-0.81)
Total pooled data	185	50 (27)	94 (84-98)	96 (92-98)	25.4 (10.7-60.2)	0.06 (0.02-0.19)
		555 CD. LRe, likelihood ratio o				

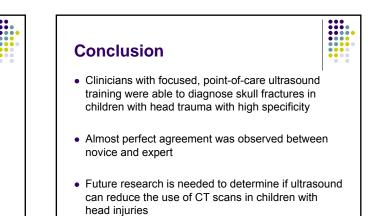
Discussion



- 1-hour, focused musculoskeletal ultrasound training session
- Novice sonologists are able to quickly and accurately diagnose skull fractures with high specificity

• intracranial injury may occur without skull fracture

Discussion

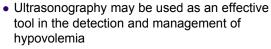

 Knowledge of suture anatomy is essential in performing ultrasound examinations of infant skulls

Discussion

- Negative fracture in sonography
 - Do CT?
- Novice group of sonologists was trained to perform skull ultrasound with such high specificity

Discussion

- There is a missed fracture
 - Due to a skull fracture that was *adjacent* to but not *directly beneath* the scalp hematoma
 - Now recommend scanning the areas around the scalp hematoma



Suat Zengin ^{a,#}, Behcet Al ^a, Sinan Genc ^a, Cuma Yildirim ^a, Süleyman Ercan ^b, Mehmet Dogan ^a, Gokhan Altunbas ^c

⁶ Department of Emergency Medicine, Gaziantep University School of Medicine, Gaziantep, Turkey
 ⁶ Department of Cardiology, Gaziantep University School of Medicine, Gaziantep, Turkey
 ⁶ Department of Cardiology, Kilts State Hospital, Kilts, Turkey

Introduction Early detection of hypovolemia and prompt institution of therapy may save lives Physical examination findings Hematocrit levels Biochemical markers Central venous pressure (CVP)

Introduction

- Fast
- Repeatable
- Applicable at the bedside

Introduction

- Ultrasonographic measurement of the diameter of inferior vena cava (dIVC) to detect hypovolemia has become popular
- In this study
 - Investigated the efficacy of the ultrasonographic evaluation of IVC and right ventricle (RV) diameters in the diagnosis and treatment of hypovolemia

Materials and Methods

Patients

• With dry mucosa, reduced skin elasticity, cool extremities, lengthened capillary refill times, tachycardia, reduced urine output, orthostatic hypotension, and fatigue

- Hypovolemia is anticipated
 - abnormal uterine bleeding, gastrointestinal bleeding, diarrhea, and vomiting

Materials and Methods

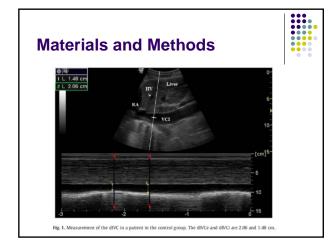
- Control Group
 - healthy volunteers
 - such as patient relatives and medical personnel

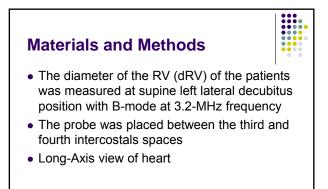
Materials and Methods

- Exclusion
 - Ultrasonographic measurements could not be performed
 - because of technical and anatomical reasons, eg. Obesity, gas
 - Tricuspid failure, right-sided heart disease, portal hypertension, and obstructive lung disease
 - Intubated patients

Materials and Methods

• Physisians


- 8 hours of theoretical and applied focused echocardiography training and 8 hours of basic emergency ultrasonography training were given
- IVC and RV diameters were measured in 15 hypovolemic patients and 15 healthy volunteers in the presence of a expert


Materials and Methods

- Inferior vena cava diameters were checked in the supine position at 5-MHz frequency with M-mode
- Probe was placed in the subxiphoid location, and the sagittal section of the IVC was imaged

Materials and Methods

- dIVC was performed at 2 cm caudal of the junction point of the hepatic vein and IVC
- Inspiratory (dIVCi) and expiratory (dIVCe) diameters of the VCI were detected
 - The caval index (CI) (CI = dIVCe dIVCi/dIVCe) was calculated as the IVC provided respiratory variance

Materials and Methods

• First moment the mitral valve started to close was considered as the end of diastole, and measurements of dRV were performed at this time point

• Measuring RV lumen under the tricuspid valve from the interior wall to the opposite interior wall is recorded as dRV

Materials and Methods

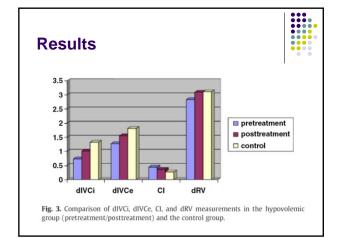
Fig. 2. Measurement of the dRV in a patient in the control group. The dRV is 3.89 cm.

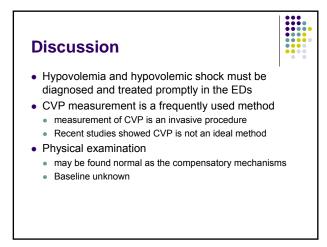
Materials and Methods

Treatment

- 1000 ml of 0.9% isotonic NaCl solution
- After the intravenous fluid, all measurements were repeated

Results	


 Table 1


 Comparison of parameters measured of the patient and control groups

	Patient group, pretreatment	Patient group, posttreatment	Control group	$P^{a^{*}}/P^{b^{**}}$	
Age (y)	57.1 ± 16.8		56.3 ± 16.8	.821	
SBP (mm Hg)	94.30 ± 13.2	113.3 ± 9.6	123.9 ± 15.6	.000/.000	
DBP (mm Hg)	55.7 ± 12.2	66.6 ± 8.7	69.3 ± 11.1	.000/.000	
Pulse (pulse/min)	104 ± 15.1	93.4 ± 12.2	80.8 ± 11.6	.000/.000	
dIVCi (cm)	0.73 ± 0.37	1.01 ± 0.44	1.32 ± 0.35	.000/.000	
dIVCe (cm)	1.27 ± 0.43	1.55 ± 0.41	1.81 ± 0.38	.000/.000	
CI (cm)	0.44 ± 0.17	0.36 ± 0.14	0.27 ± 0.12	.000/.000	
dRV (cm)	2.83 ± 0.37	3.09 ± 0.33	3.11 ± 0.41	.000/.000	

P^a/P^b, Patient group pretreatment vs posttreatment/control group.

Paired t test.
** Independent samples t test.

Discussion

- Another study performed on blood donors suggested that the serial measurement of IVC diameters may be used to follow ongoing blood loss and evaluate the response to Tx
- A correlation existed between blood pressure and pulse in the hypovolemic group, none existed in the control group

Discussion

- The results we obtained in this study reveal that
 - IVC and RV diameters may be beneficial for the early detection of hypovolemia and in the follow of fluid replacement.
 - The dIVC and dRV are more sensitive than conventional parameters (such as BP and HR) in diagnosing hypovolemia.

Discussion

- Limitations
 - Some diseases (tricuspid failure, right cardiac diseases, portal hypertension, and obstructive lung disease) impact the RV and IVC diameter
 - The important limitation of the study is also the definition of hypovolemia using conventional clinical findings
 - All measurements in each patient were done by the same physician
 - Intraobserver variability was not evaluated

Conclusion Bedside serial ultrasonographic measure of RV and IVC diameters may be a useful tool to detect and follow-up hypovolemia and evaluate the adequacy of volume replacement

