JOURNAL MEETING

- 1. Massive transfusion in traumatic shock The Journal of Emergency Medicine, Vol. 44, No. 4, pp. 829–838, 2013
- 2. Patients With Rib Fractures Do Not Develop Delayed Pneumonia: A Prospective, Multicenter Cohort Study of Minor Thoracic Injury Annals of Emergency Medicine, 2012;60:726-731

2013-05-20 Supervisor:VS.床次件 Presenter:Int.床业 壬

JOURNAL MEETING

- 1. Massive transfusion in traumatic shock The Journal of Emergency Medicine, Vol. 44, No. 4, pp. 829–838, 2013
- 2. Patients With Rib Fractures Do Not Develop Delayed Pneumonia: A Prospective, Multicenter Cohort Study of Minor Thoracic Injury Annals of Emergency Medicine, 2012;60:726-731

Tramatic shock

- Hemorrhage after trauma is common cause of death
 - 5 -6 million people/yr die globally from trauma
 - leading cause of death of Americans < 35 y/o

Primary goals of traumatic shock

- Restoration of oxygen delivery to endorgation
- Maintenance of circulatory volume.
- Prevention of ongoing bleeding
 - source control
 - * correction of coagulopathy

Massive transfusion

- "Massive" transfusion :
 - transfusion of at least 10 U of PRBCs in 24 h
 - occurs in 1-3% of civilian traumas
- Overall injury severity--mortality rates are as high as 50–70%

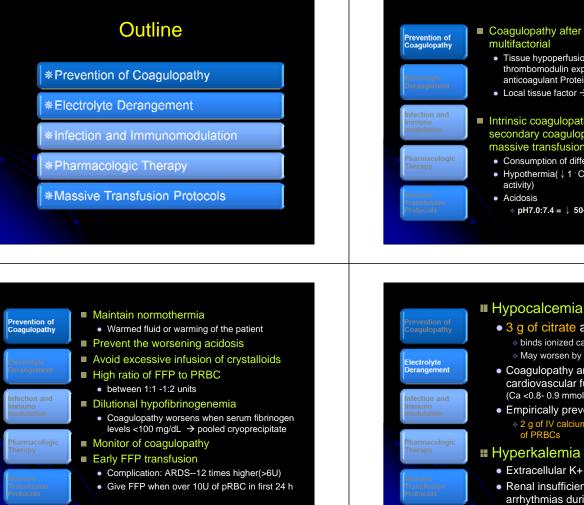
Complications of massive transfusion

- Coagulopathy
- Hypothermia
- Acidosis
- Electrolyte abnormalities
- Infection
- Immunomodulatory phenomena

Propose of this article

- Complications through the use of massive transfusion protocols
 - Pathogenesis
 - Implications
 - Prevention
 - Treatment
- Optimal ratio of blood products transfused in large volume resuscitation and prevention of secondary coagulopathy

Disadvantage of resuscitation with crystalloids


■ Resuscitation with 0.9% N/S

- Dilutional anemia and coagulopathy
- Activates inflammatory cascades
 - « cellular swelling, acidosis, metabolic dysfunction, and apoptosis - interstitial edema and organ dysfunction

American College of Surgeons

- Avoid large-volume (>1.5L)resuscitation with crystalloids
- Favor early transfusion of blood products

DISCUSSION

Coagulopathy after massive transfusion is multifactorial

- Tissue hypoperfusion → increases endothelial thrombomodulin expression→ activation anticoagulant Protein C
- Local tissue factor → hyperfibrinolysis and DIC

Intrinsic coagulopathy is worsened by a secondary coagulopathy caused by massive transfusion

- Consumption of different transfusion products • Hypothermia(↓1°C:↓10% clotting factor
- activity) Acidosis

• 3 g of citrate as anticoagulant

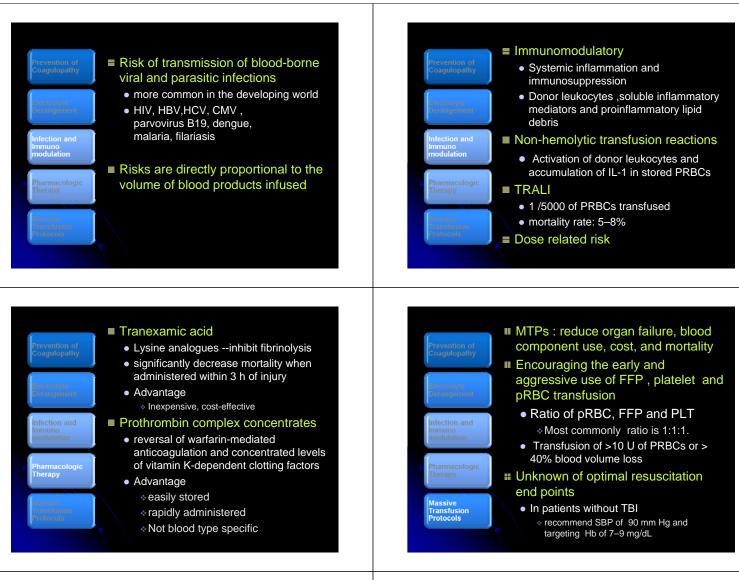
• Empirically prevention of this study

• Extracellular K+ increases 5 to10 fold

• Renal insufficiency: May cause arrhythmias during rapid transfusion

2 g of IV calcium gluconate for every 2–4 U of PRBCs

binds ionized calcium


May worsen by dilution

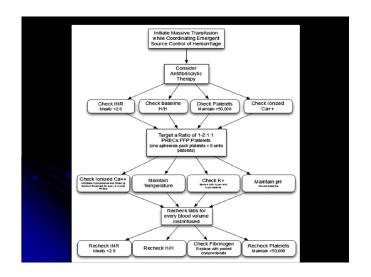
cardiovascular function

(Ca <0.8- 0.9 mmol/L)

Coagulopathy and impaired

♦ pH7.0:7.4 = ↓ 50-90%cotting factor activity

Who Will Require Massive Transfusion after Trauma?


Prediction tools

	ABC Score (109)	TASH Score (107)	McLaughlin Score (106)	
Blood pressure	$SBP \le 90 \text{ mm Hg}$	SBP (categorical)	SBP < 110 mm Hg	
Heart rate	HR ≥ 120 beats/min	HR > 120 beats/min	HR > 105 beats/min	
FAST examination	Positive FAST examination	Positive FAST examination	-	
Mechanism	Penetrating mechanism	Complex long bone or pelvic fracture	-	
Demographics	-	Male gender	-	
aboratory tests	-	Hemoglobin (categorical)	Hematocrit < 32%	
		Base excess (categorical)	pH < 7.25	

Conclusion

- Acute trauma leads to coagulopathy may be worsened by dilution of clotting factors, hypothermia, and acidosis.
- Blood products are immunomodulatory
 induce multi-system organ dysfunction.
- The use of an MTP may reduce the morbidity and mortality
- Most commonly ratio of pRBC/FFP/PLT= 1:1:1
- The protocols should monitor
 - correct hypothermia, hypofibrinogenemia, electrolyte disturbances

Monitor

- Correct hypothermia
- Hypofibrinogenemia
- Electrolyte disturbances
 - Hypocalcemia
 - Hyperkalemia

JOURNAL MEETING

- 1. Massive transfusion in traumatic shock The Journal of Emergency Medicine, Vol. 44, No. 4, pp. 829–838, 2013
- Patients With Rib Fractures Do Not Develop Delayed Pneumonia: A Prospective, Multicenter Cohort Study of Minor Thoracic Injury Annals of Emergency Medicine, 2012;60:726-731

Introduction

- Thoracic trauma frequency
 - 12 people per million / day, 796,000 ED visits /yr.
- Minor thoracic injury patients are rapidly discharged from ER without appropriate follow.
- Delayed pneumonia is one of several morbidities related to chest trauma
 - Most minor thoracic injury studies are retrospective and based on data from admitted patients

Goals of This Investigation

- Quantify the incidence of delayed pneumonia in patients receiving a diagnosis of minor thoracic injury but discharged and treated as outpatients.
- Identify the risk factors in patients most susceptible to developing delayed pneumonia.

MATERIALS AND METHODS

Study design

- prospective, multicenter cohort study
- From Nov. 2006 to Nov. 2010
- 4 teaching hospital EDs in Canada
- Selection of participants
 - aged 16 years and older
 - C.C: minor thoracic injury
- directly discharged without admission
- Follow up to assess outcome
 - weeks 1 and 2: CXR AP/Lat
 - week 4 and 12 : telephone interview

Characteristics	Included, N=1,057(%)	Lost, N=75 (%)
Age, mean (SD), y	53(17)	44 (18)
>65	273 (26)	10 (13)
>75	113(11)	6 (8)
>85	19(2)	2 (3)
Sex (men)	666 (63)	46 (6)
Mechanism of injury		
Fall from own height	370 (35)	27 (36)
Fall greater than own height	241 (23)	10 (13)
Motor vehicle crashes	262 (25)	18 (24)
Pedestrian vs auto	11(1)	1(1)
Bicyclist vs auto	9(1)	1(1)
Direct hit	105 (10)	15 (20)
Other	58 (5)	3 (4)
Preexisting comorbidity		
Presence of at least 1 preexisting comorbidity	264 (25)	12 (16)
COPD	36(3)	0
Asthma	87 (8)	6 (8)
Airway disease Asthma or COPD	110 (10)	6 (8)
Osteoporosis	81(8)	2 (3)
Diabetes	110(10)	4 (5)
Smoking status		
Current smoker	271 (31)	23 (66)
Former smoker	233 (25)	3 (9)
Nonsmoker	387 (44)	9 (26)
Alcohol intoxication	72(7)	5 (7)
Preinjury medication		
Acetylsalicylic acid	179(17)	8 (11)

LIMITATIONS

Small number of patients

Selection bias

- hospitalized patients were excluded
- majority of physicians who care for minor thoracic injury patients in outpatient settings

Self-reporting of the history

Diagnostic bias

- including any form of "pulmonary infection" treated after 2 weeks → overestimate of true pneumonia
- Physician dependence on imaging for rib fracture

diagnosis

RESULTS Patients consulting ED with possible MNOR THORACIC INJURY NOT INVITED Total (n=610) USSED INVITATION TO PARTICIPATE (n=250 ASSESSED FOR ELIGIBILITY Delay more than 72 hours Declined to be invited (n=124) (n=228) (Total = 955) EXCLUDED 1. INELIGIBLE Moderatio ASSESSED FOR ELIGIBILITY (n=2087) (n=4) (n=177) (n=27) (n=10) Modessmarkescn Putmonary lesion Verteoral fracture fist or 2nd nb fracture Non thoracic trauma as i fist vial too far from the i GUS < 15 No trauma to explain the Age under 15 yr old (n=5) (n=30) (n=44) TOTAL RECRUITED: (n=1132) 2. ELIGIBLE BUT NOT RECRUITED Not available to Followup Not able to answer Missing info (n=216) (n=38) (n=7) OTHER REASONS (n=93) LOST TO FOLLOW-UP (Total = 75) DATA ABLE FOR ANALYSIS: (n = 1057)

Main result

2-week clinical follow-up, only 6 patients (0.6%) developed delayed pneumonia.

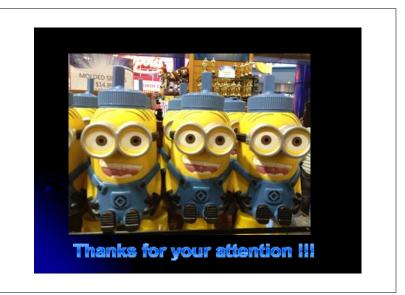

4 and 12 weeks: no other delayed pneumonia

Table	Table 2. Clinical and demographic characteristics of patients with pneumonia (n=6).*											
Age	Sex	Rib Fractures	COPD	Asthma	Osteoporosis	Diabetes	Smoking	Alcohol	Time to Pneumonia			
69	Male	0 (Yes	Yes	No	No	Ex-smoker	No	Day 14			
49	Male	(2)	No	No	No	No	Ex-smoker	Yes	Day 14			
60	Male	(4)	No	No	No	No	Yes	No	Day 2			
43	Male	(1)	No	No	No	No	Yes	No	Day 14			
71	Female	0	No	No	No	No	No	No	Day 7			
55	Female	(3)	No	Yes	Yes	No	Yes	Yes	Day 2			

Risk of pneumonia for patients with preexistent pulmonary disease : 8.61

DISCUSSION

- Very low risk of subjects developing delayed pneumonia, less than 1%.
- Risk factors associated with post-minor thoracic injury delayed pneumonia:
 - radiograph-confirmed rib fractures and preexistent pulmonary disease.
 - combined relative risk of 8.6%
- Age as a risk factor of pneumonia, but should not be extrapolated to all patients with minor thoracic injury

