Journal reading

指導者: VS王瑞芳 報告者: Intern 黃迺偉 2013/1/21

Introduction

- Post cardiac arrest syndrome: Systemic ischemic-reperfusion injury Global activation of coagulation system
- The International Society on Thrombosis and Hemostasis (ISTH) disseminated intravascular coagulation (DIC) score:

To measure the severity of the coagulopathy and is used for the diagnosis of DIC

Objective

- To investigate the prognostic implication of early coagulopathy represented by initial DIC score in out-ofhospital cardiac arrest (OHCA).
- To describe the severity of initial coagulopathy in cardiac arrest patients using ISTH DIC score and evaluate its prognostic implication in PCAS.

Title

Prognostic implication of initial coagulopathy in out-of-hospital cardiac arrest

Joonghee Kim, Kyuseok Kim*, Jae Hyuk Lee, You Hwan Jo, Taeyun Kim, Joong Eui Rhee, Kyeong Won Kang (Department of Emergency Medicine, Seoul National University Bundang Hospital, 166 Gumi-ro, Bundang-gu, Seongnam-si, Gyeonggido, 463-707, Republic of Korea)

Resuscitation, 2013

Introduction

- MODS(Multiple organ dysfunction syndrome): common in PCAS
- The role of coagulation process in MODS of sepsis or trauma:
 DIC score with significant prognostic implication.
- Hypothesis:
- initial DIC score in resuscitated out-of-hospital cardiac arrest (OHCA) patients correlated with early mortality rate and cardiac arrest outcomes

ISTH DIC score

Platelet	count: > 100 0 50-100 1 < 50 2	Add the 4 Parameters for total score: Plt count, PT, fibrinogen and D-Dimer
	Prolongation	Interpretation of score;
PT:	< 3 sec 0	≥ 5 – laboratory evidence consistent with overt DIC
	> 3 sec - < 61	< 5 – suggestive of non-overt/low grade DIC
	> 6 sec 2	
		Using cut off 5 93% sensitive
Fibrinog	en:	98% specific for DIC
riciniog	> 1 g/L=>100 mg/dl 0	oo to specific for Dro
	< 1 g/L 1	
D-Dimer	r – No increase 0	•
	Moderate increase 2 Marked increase 3	

Methods

- OHCA registry: retrospective study for patients with ROSC without recent use of anticoagulant
- Time: 2008/1 ~2011/12
- Patients were assessed for prehosptial factors, initial laboratory results and therapeutic hypothermia.
- Outcome variables: survival discharge, 6-month CPC and survival duration within the first week after ROSC.

Participants and data collection

- Exclusion criteria:
 - 1. Age <18 years
 - 2. Recent use of warfarin, heparin, low molecular weight heparin and intravenous thrombolytics
- Prehospital factors: sex, age, arrest location, presence of witness, bystander CPR, time to basic life support (BLS), initial rhythm

Participants and data collection

- Total of 547 OHCA patients with 292 patients achieved ROSC
- After using exclusion criteria: 273 patients
- Final: 252 patients(92.3%) with laboratory variables available for calculation of initial DIC score

Participants and data collection

- Outcome variables:
- survival discharge, 6-month cerebral performance category (CPC) score, duration of survival within 7 days post-ROSC
- favorable long-term outcome:

CPC score 1 or 2

Unfavorable outcome: CPC score 3~5

Cerebral performance category score

Table 1Patient characteristics of study population.

Sex, male, no. (%)	149(59.1)
Age, years, mean (SD)	64.1 (17.3
Cardiac arrest in public location, no. (%)	52(20.6)
Witnessed cardiac arrest, no. (%)	205(81.3)
Bystander chest compression, no. (%)	79(31.3)
Time to first BLS, min, median (IQR)	4(0-11)
Shockable initial rhythm, no. (%)	69(27.4)
Prehospital ROSC, no. (%)	7(2.8)
Cause of arrest, no. (%)	
Cardiac	91(36.1)
Respiratory	111 (44.0)
Traumatic	53(21.0)
Food asphyxia	18(7.1)
Hanging	14(5.6)
Head and neck injury	9(3.6)
Multiple blunt or penetrating injury	5(2.0)
Drowning	3(1.2)
Intoxication	1(0.4)
Therapeutic hypothermia, no. (%)	81(32.1)
Overt DIC (DIC score \geq 5), no. (%)	82(32.5)
1-week survival, no. (%)	79(31.3)
Survival discharge, no. (%)	54(21.4)
6-month CPC 1 or 2, no, (%)	28(11.1)

Patient characteristics according to DIC score

	DIC score 0-2 n=55	DIC score 3 n = 67	DIC score 4 n = 48	DIC score 5 n = 59
Prehospital and demographic variables				
Sex, male, no. (%)	39(70.9)	39(58.2)	26(54.2)	36(61.0)
Age, years, mean (SD)	55.9 (18.2)	63.8 (14.8)	73.3 (13.1)	66.9 (17.1)
Cardiac arrest in public location, no. (%)	12(21.8)	21(31.3)	8(16.7)	7(11.9)
Witnessed cardiac arrest, no. (%)	38(69.1)	57(85.1)	41(85.4)	47(79.7)
Bystander chest compression, no. (%)	20(36.4)	25(37,3)	18(37.5)	12(20.3)
Time to first BLS, min, median (IQR)	2(0-7)	6(1-12)	4(0-12)	5(0-12)
Shockable initial rhythm, no. (%)	20(37.0)	18(26.9)	9(18.8)	17(29.3)
Prehospital ROSC, no. (%)	5(9.1)	1(1.5)	0(0.0)	1(1.7)
Presumed cardiac etiology, no. (%)	27(49.1)	29(43.3)	13(27.1)	18(30.5)
DIC score components				
Platelet, 10 ⁶ /L, median (IQR)	222(175-293)	196(159-244)	165(137-248)	149(106-218)
PT, seconds, median (IQR)	14(13-15)	15(15-17)	17(17-19)	21(19-24)
Fibrinogen, mg/dL, median (IQK)	305(260-391)	380(278-535)	315(268-438)	337(205-484)
D-dimer, ug/ml, median (IOR)	2.04(0.68-3.02)	7.32 (3.14-18.77)	15.48 (4.58-20.00*)	15.04 (7.45-20.00)
Other laboratory variables for adjustment				
WBC count, 10°/L, median (IOR)	11.5 (10.2-13.3)	12.8 (10.4-15.4)	12.6 (9.1-16.1)	13.8 (9.3-18.2)
Hematocrit, %, mean (SD)	42.1 (6.0)	38.0 (7.6)	36.1 (8.8)	36.0 (9.0)
BUN, mg/dL, median (IQR)	15(13-19)	19(15-30)	19(15-43)	23(14-45)
Creatinine, mg/dL, median (108)	1.2(1.0-1.4)	1.3 (1.0-1.9)	1.3 (0.9-2.7)	1.5(1.1-2.6)
Bicarbonate, mEo/L, mean (5D)	16.7 (4.0)	14.6 (4.4)	142 (4.6)	12.0 (5.3)
Albumin, gidL, mean (SD)	4.1(0.5)	3.6(0.7)	3.3 (0.8)	2.9(0.7)
Bilirubin total, mg/dL, median (IOR)	0.7 (0.5-0.9)	0.6(0.4-0.8)	0.8 (0.5-1.0)	1.0 (0.7-1.7)
CRP, mg/dL, median (IOR)	0.20 (0.20-0.30)	0.34 (0.20-4.70)	0.80 (0.20-5.26)	3.04 (0.48-11.36)
Troponin I, ng/ml. (IQR)	0.04 (0.02-0.10)	0.05 (0.04-0.15)	0.05 (0.03-0.19)	0.14 (0.06-0.36)
Therapeutic hypothermia, no. (%)	26(47.3)	28(41.8)	12(25.5)	14(23.7)
Cardiac arrest outcomes, no. (%)				
1-week survival, no. (%)	35(63.6)	23(343)	10(21.3)	10(16.9)
Survival discharge, no. (%)	25(45.5)	17(25.4)	5(10.4)	6(10.2)
6-month CPC 1 or 2, no (%)	17(31.5)	8(11.9)	0(0.0)	2(3.4)

Statistical analysis

- Analysis of variance (ANOVA), Kruskal–Wallis, Chisquare or Fisher's exact test was performed as appropriate for comparison between groups.
- Pearson's method: correlation analysis if 2 variables involved are both interval variables and Spearman's method was used otherwise.
- Logistic regression /Cox proportional hazards model analysis: for univariable analysis
 Logistic regression: odd ratios
 Cox proportional hazard model analysis: hazard ratios

Result: Baseline characteristics

- Overt DIC feature (DIC score = or > 5):
 82/252(32.5%) patients.
- Survival discharge to home /nursing home: 54/252 (21.4%) patients.
- Favorable long-term outcome (6-month CPC 1 or 2): 28/252(11.1%) patients.
- Only 3/130 (2.3%) patients with DIC score >3 achieved favorable longterm outcome.

Result

- Increased DIC score: strong risk factor for both inhospital death and unfavorable long-term outcome (6-month CPC 3-5)
- Risk for inhospital death :1.89 (95% CI,1.48–2.41) and unfavorable long-term outcome : 2.21 (95% CI, 1.60–3.05)

Result

- Backward stepwise multivariable logistic regression models were constructed using the variables with p < 0.1 in univariable analyses.
- Inhospital death:
 - 1.61-fold increase of risk (95% CI, 1.17–2.22)
- Unfavorable long-term outcome:
 - **1.84** -fold increase of risk (95% CI,1.26–2.67)

Table 3
Stepwise multivariatelogistic regression model analysis of the relationship between poor outcome and various potential prognostic factors.

	Odds ratio	p
Inhospital death		
Sex (male)	0.47 (0.21-1.06)	0.068
Age (per 1 year)	1.03 (1.00-1.06)	0.035
Time to first BLS (per 1 min)	1.06 (1.00-1.13)	0.048
Shockable initial rhythm	0.20 (0.09-0.44)	< 0.001
Bicarbonate (per 1 mEq/L)	0.91 (0.83-1.00)	0.045
Therapeutic hypothermia	0.39 (0.18-0.85)	0.018
DIC score (per 1 unit)	1.61 (1.17-2.22)	0,003
Poor long-term outcome (6-month CF	C ≥ 3)	
Age (per 1 year)	1.03 (1.00-1.07)	0,060
Time to first BLS (per 1 min)	1.16 (1.03-1.31)	0.017
Shockable initial rhythm	0.14 (0.05-0.40)	< 0.001
Presumed cardiac etiology	0.31 (0.11-0.92)	0.034
DIC score (per 1 unit)	1.84 (1.26-2.67)	0.002

DIC score vs. long-term prognostic performance

- Area under the ROC curve (AUC)
- Prediction of unfavorable long-term outcome: 0.79 (95% CI, 0.69–0.88)
- Optimal cutoff point of DIC score to predict poor outcome:
 3~4

sensitivity	specificity	PPV	NPV
57%	89.3%	97.7%	20.7%
95% CI, 50.2-63.5	95% CI, 71.8-97.6	95%CI, 93.4-99.5	95% CI, 13.8-29.0

Table 4Stepwise multivariateCox proportional hazard model analysis of the associations between early mortality risk and various potential prognostic factors.

	Hazard ratio	p
Age (per 1 year)	1.02 (1.01-1.03)	0.003
Shockable initial rhythm	0.49 (0.33-0.73)	< 0.001
CRP (per 1 mg/dL)	1.02 (1.00-1.04)	0.047
Therapeutic hypothermia	0.38 (0.26-0.55)	< 0.001
DIC scoregroups (p-trend < 0.001)		
1st group (DIC score $0-2$, $n=55$)	1.00 (Reference)	
2nd group (DIC score 3, $n = 67$)	1.96 (1.13-3.40)	0.017
3rd group (DIC score 4, $n = 48$)	2.26 (1.27-4.02)	0.006
4th group (DIC score 5, $n = 59$)	2.77 (1.58-4.85)	< 0.001
5th group (DIC score 6–8, $n = 23$)	4.29 (2.22-8.30)	< 0.001

Cardiac origin vs. non-cardiac origin

- Patients with cardiac etiology: with better chance of achieving survival discharge (p = 0.002),favorable long-term outcome (p < 0.001), especially if DIC score was <5 (p = 0.006)
- In 3rd, 4th and 5th group: (DIC score > 3, N = 35) No one regained consciousness (CPC: 4, 5) if the cause of arrest was cardiac-origin.

DIC score vs. Early mortality risk

- Analyze differential survival rate during 1ST week after ROSC.
- 5 groups (DIC score): <3, 3, 4, 5, >5
- In univariable analysis, there was significant gradient of increasing hazard ratio across 5 consecutive groups (p< 0.001).
- Hazard ratio for death during the 1ST week after ROSC: (compared with first group DIC score < 3)

Group 4 (DIC score 5): 3.95 (95% CI, 2.34–6.68) **Group 5** (DIC score > 5): 6.13 (95% CI, 3.30–11.38)

Kaplan-Meier survival curves

 The survival curves were statistically different according to the log-rank test (p = < 0.001)

Prediction of unfavorable long-term outcome

- ROC curves of DIC score; area under the curve (AUC)
- cardiac-origin subgroup: 0.84 (95% CI, 0.76–0.93)
- non-cardiac origin subgroup: 0.64 (95% cl, 0.41-0.86)
- Difference between non-cardiac and cardiac etiology subgroup was not statistically significant (p = 0.095)

Prediction of unfavorable long-term outcome

 The optimal cutoff point of DIC score for prediction of unfavorable long-term outcome:

between DIC score 3 and 4

(cardiac-subgroup =whole study population)

• By using the cutoff point:

sensitivity	specificity	PPV	NPV
48.6%	100.0%	100.0%	33.9%
95% CI, 36.7–60.7	95% CI, 82.2-100.0	95%CI, 89.9-100.0	95% CI, 21.8–47.8

Discussion

- The increased initial DIC score was an independent risk factor for inhospital death and unfavorable long-term outcome
- The relationships remained significant in cardiac-cause subgroup where the influence from underlying conditions causing coagulopathy is minimized.
- High possibility that patients with higher DIC score:
 With underlying or precipitating conditions that could had already caused varying degree of coagulopathy before cardiac arrest.

Discussion

- However, the global coagulation activation of cardiac arrest per se could have significant prognostic implication.
- Previous studies: consumptive coagulopathy plays central role in pathogenesis of MODS in critical conditions such as sepsis or trauma.
- Similar global activation of coagulation pathway is also observed in cardiac arrest patients
- In this study, significant correlation between DIC score and early mortality rate was found.

- MODS including cardiac dysfunction is an important cause of death during early post-resuscitation period
- early coagulopathy might play a significant role in the development of MODS and subsequent increased mortality.
- Lack of data of progressive changes of hemodynamics and organ function to prove.

Limitations

- Retrospective study
- Below-goal variables: number of events per variables ratio lower than the desired ratio (>10)
- Authors did not perform multivariable model analysis in cardiac subgroup as its population size was too small for multivariable analysis.
- Chronological evaluation of hemodynamic indices, inflammatory markers and functional status of major organs was not possible.

(Availability of these data: to provide direct evidence of early pathological progressions: myocardial dysfunction, inflammation , MODS)

Conclusion

- Increased initial DIC score in OHCA was an independent predictor for poor outcomes and early mortality risk.
- Increased initial DIC score in cardiac arrest was an independent risk factor for both inhospital death and unfavorable long-term outcome.

Thanks for your attention!