

### Title

Prospective correlation of arterial vs venous blood gas measurements in trauma patients☆,☆☆

Scott E. Rudkin MD, MBA <sup>a.\*</sup>, Christopher A. Kahn MD, MPH <sup>a</sup>, Jennifer A. Oman MD, MBA <sup>a</sup>, Matthew O. Dolich MD <sup>b</sup>, Shahram Lotfipour MD, MPH <sup>a</sup>, Stephanie Lush RN <sup>b</sup>, Marla Gain RN <sup>a</sup>, Charmaine Firme <sup>a</sup>, Craig L. Anderson MPH, PhD <sup>a</sup>, Mark I. Langdorf MD, MHPE <sup>a</sup>

<sup>a</sup>Department of Emergency Medicine, University of California, Irvine, CA 92868, USA <sup>b</sup>Division of Trauma, Department of Surgery, University of California, Irvine, CA 92868, USA

Received 8 August 2011; revised 23 September 2011; accepted 23 September 2011

The American Journal of Emergency Medicine

### Introduction

- ABG provides important information for critically ill patients
- BE(base excess) is a useful predictor of serious injury in trauma patients
- Base deficit improves as a patient is successfully resuscitated
- American College of Surgeons (ACS)

### Introduction

- ABG can cause patient morbidity by arterial injury and is more painful. Interchangeable?
- Prior study: VBG can substitute for an ABG in DKA or acutely ill medical patients (r=0.97), pH lower 0.03 and 0.056
- (1) VBG similar to ABG in pH and BE in acutely injured patient?
- (2)Linear regression equation accurately predict ABG from VBG?

### Materials and Methods

- ACS-verified level 1 trauma center, from Jan.~Sep. 2006
- Paired ABG and VBG (pH and BE)
- Age>18 years



Systolic blood pressure less than 90 mm Hg in the emergency department (ED)

Requiring transfusion of blood products Requiring endotracheal intubation

Positive Focused Assessment of Sonography in Trauma

Ongoing hemorrhage (declining bedside hemoglobin level)

Pelvic fractures with disrupted ring

Hypoxia (SpO<sub>2</sub> <93% on room air). Judgment of trauma captain

All patients older than 60 years with any of the following:

Motor vehicle crash (MVC) greater than 30 mph

MVC with passenger space intrusion greater than 12 in

Passenger ejection from the vehicle

MVC rollover

MVC with fatality in same vehicle

Automobile vs pedestrian injury, at any speed Fall from greater than standing height

Systolic blood pressure less than 100 mm Hg on ED arrival

Pulse less than 60 or greater than 100 beats per minute

⊕ ttillden.on

ral

## **Study Procedures**

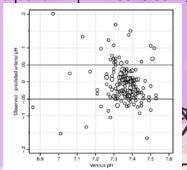
- · Included if an ABG was clinically indicated
- · Femoral and radial arteries
- 10 mins of sample acquisition
- BE calculated from pH and pCO2 results
- 15 attending physicians
- Consensus single threshold→
- pH<0.05 units
- BE<2

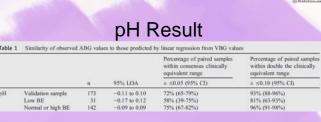


## Statistical Analysis

- 384 patients enrolled, split equally into derivation and validation groups
- Linear regression to predict ABG pH and BE from the corresponding VBG results
- Excel and Stata
- 95% confidence intervals (95% CI)
- 95% limits of agreement (LOAs)

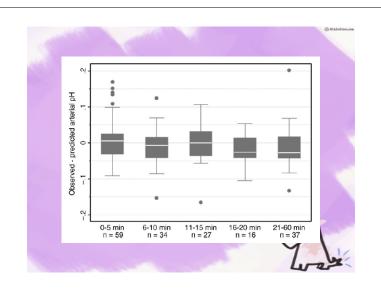


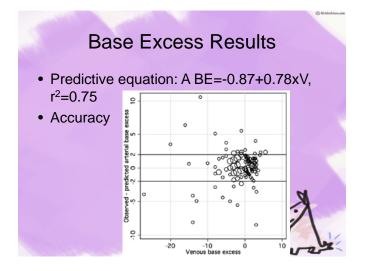

### Results

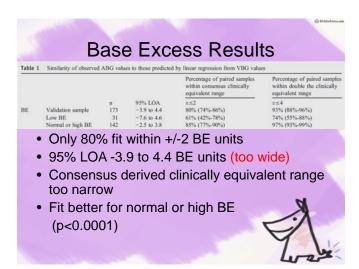

- 385 collected, excluded 29 (7.5%) with incomplete data, 10 (2.5%) greater than 1 hour between samples, 1 times were not recorded
- 346 (89.9%) for analysis
- No statistically significant differences in these parameters between study patients and overall population of trauma patients

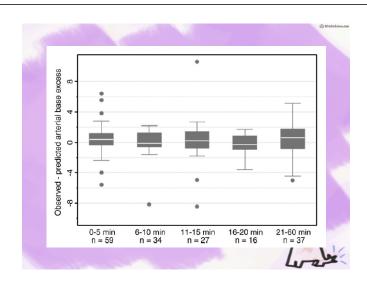
## pH Result

• Predictive equation: A pH=1.09+0.86xV,


r<sup>2</sup>=0.70
• Accuracy





- Only 72% fit within +/-0.05 pH units
- 95% LOA -0.11 to 0.10 pH units (too wide)
- Consensus derived clinically equivalent range too narrow
- Fit better for normal or high BE (p=0.6

| 3 | Observed<br>ABG arterial<br>pH value | Calculated<br>arterial pH<br>derived from<br>observed VBG<br>venous pH<br>value | Difference | © ttelidos.co |
|---|--------------------------------------|---------------------------------------------------------------------------------|------------|---------------|
|   | 7.60                                 | 7.63                                                                            | 0.03       |               |
|   | 7.50                                 | 7.54                                                                            | 0.04       |               |
|   | 7.40                                 | 7.45                                                                            | 0.05       |               |
|   | 7.30                                 | 7.37                                                                            | 0.07       |               |
|   | 7.20                                 | 7.28                                                                            | 0.08       |               |
|   | 7.10                                 | 7.20                                                                            | 0.10       |               |
|   | 7.00                                 | 7.11                                                                            | 0.11       |               |
|   | 6.90                                 | 7.02                                                                            | 0.12       |               |
|   | 6.80                                 | 6.94                                                                            | 0.14       | R             |
|   | 6.70                                 | 6.85                                                                            | 0.15       |               |
|   | 6.60                                 | 6.77                                                                            | 0.17       | 1             |
|   | 6.50                                 | 6.68                                                                            | 0.18       | la la         |
|   |                                      |                                                                                 |            |               |









### Limitations

- Clinically equivalent thresholds for pH and BE were arbitrarily determined (by experts)
- Convenience sample omitting midnight to 8 AM
- Excluded samples drawn more than 1 hour apart or missing data
- Only 25.6% of all trauma patients were enrolled
- Small sample size
- Didn't constrain the location of blood draws
- Didn't follow up patients

## Largest study in acute-phase trauma patients

 VBG and ABG results correlate well in trauma patients (r<sup>2</sup>=0.70 and 0.75)

Discussion

- But LOAs broader and predicted values outside ranges too frequently (28% and 20%)
- Not clear which values best reflect shown physiology

#### Discussion

- Other studies: lack data, eg: LOAs, proportion fell outside
- Gennis et al: 95% within +0.11 pH units, heterogenous group
- Clinical and hemodynamic state in trauma would change more rapidly
- Assessed patients essentially in first hour after injury

#### Discussion

- Venous: peripheral Artery: central, unknown effect on acid-base values
- Schmelzer et al: central venous BE associated with survival, global perfusion, outcome
- · VBG sufficient guide resuscitation? Need follow up
- Enroll a consecutive sample, shortening the time between blood draws, follow up clinical outcome
- · ABG on all trauma patients is unethical
- · Central VBG more difficult to study



## Summary

- Only 72% to 80% correlate with ABG
- 95% LOAs unacceptably wide
- ABG samples should be obtained for management of acutely ill trauma patients if accurate acid-base status is required
- Reliance on VBG samples to predict arterial pH and BE cannot be justified

#### **Title**

#### ED crowding and the use of nontraditional beds

Candace McNaughton MD<sup>a,b,\*</sup>, Wesley H. Self MD, MPH<sup>a</sup>, Ian D. Jones MD<sup>a</sup>, Patrick G. Arbogast PhD<sup>c</sup>, Ning Chen MS<sup>c</sup>, Robert S. Dittus MD, MPH<sup>b,d</sup>, Stephan Russ MD, MPH<sup>a</sup>

\*Department of Emergency Medicine, Vanderbilt University, Nashville, TN 37232, USA
b\*Tennessee Valley Geriatric Research, Education and Clinical Center, Department of Veterans Affairs,
Nashville TN 37232 USA

Nashville, TN 37232, USA

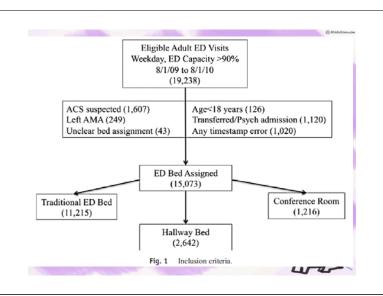
\*Department of Biostatistics, Vanderbilt University, Nashville, TN 37323, USA

\*Department of Medicine, Vanderbilt University, Nashville, TN 37323, USA

Received 20 October 2011; revised 2 December 2011; accepted 6 December 2011

The American Journal of Emergency Medicine

#### Introduction


- · Traditional ED beds
- Hallway gurneys
- Conference rooms
- Lower priority, supplies difficult available, difficult obtaining sensitive information
- Primary aim: bed type and ED evaluation time
- Secondary aim: bed type and ED evaluation time stratified by C.C. category

# Research Design and Methods

- Integrated ED information system in urban, adult ED
- · Electrical order and medical record
- Aug.1.2009 to Aug.1.2010



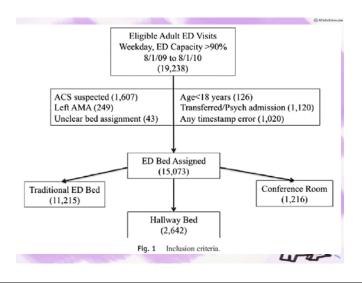
- totaldon.c



### Research Design and Methods

- No explicit protocol to guide bed assignment
- Patients assigned to a traditional bed were not moved into a nontraditional bed
- 46 traditional beds, 7 hallway beds, 5 conference room beds




# Research Design and Methods

- Primary outcome: ED evaluation time, the time between ED bed assignment and ED disposition (admission or discharged)
- Secondary analyses: bed assignment and ED evaluation time stratified by 5 most frequent C.C.
  - Abd/GU
  - Joint/Muscle
  - Fever, malaise
  - Head and neck
  - Other



# **Analysis**

- Simple and multivariate linear regression
- Natural log transformation of ED evaluation time
- Adjusted for multiple ER-level and patientlevel characteristics
- Marginal prediction used to calculate mean ED evaluation time for each bed type



|                      | Traditional<br>bed (11 215) | Hallway<br>bed (2642) | Conference room<br>bed (1216) |      |
|----------------------|-----------------------------|-----------------------|-------------------------------|------|
| Age (y) <sup>a</sup> | 44 (29, 60)                 | 39 (28, 52)           | 41 (28, 55)                   |      |
| Sex, female (%)      | 55                          | 57                    | 62                            |      |
| Insurance (%)        |                             |                       |                               |      |
| Private              | 34                          | 38                    | 38                            |      |
| State/Federal        | 48                          | 43                    | 43                            |      |
| Self-pay             | 15                          | 16                    | 17                            |      |
| Mode of arrival      | (%)                         |                       |                               |      |
| Ambulance            | 25                          | 13                    | 7                             |      |
| Car                  | 70                          | 85                    | 93                            |      |
| Helicopter           | 4                           | 2                     | 0                             |      |
| ESI a                | 2(2, 3)                     | 3 (2, 3)              | 3 (2, 3)                      |      |
| Disposition (%)      |                             |                       |                               |      |
| Discharged           | 58                          | 76                    | 77                            |      |
| Admitted             | 42                          | 24                    | 23                            |      |
| Waiting room         | 44                          | 39                    | 32                            |      |
| time (min) a         | (20, 74)                    | (17, 90)              | (17, 55)                      | ~    |
| ED evaluation        | 227                         | 234                   | 236                           | IK.  |
| time (min) a         | (146, 329)                  | (159, 333)            | (162, 344)                    | /· X |
| Boarding             | 239                         | 422                   | 283                           | 1    |
| time (min) a         | (95, 780)                   | (162, 1126)           | (151, 928)                    |      |

© Webdon,o

| Table 2 Mo                   | Mean ED evaluation time, in minutes |                                                           |  |  |  |
|------------------------------|-------------------------------------|-----------------------------------------------------------|--|--|--|
|                              |                                     | Mean time (min)<br>(95% Confidence Interval) <sup>a</sup> |  |  |  |
| Unadjusted linear regression |                                     |                                                           |  |  |  |
| Traditional bed              |                                     | 209 (207-212)                                             |  |  |  |
| Hallway bed                  |                                     | 225 (219-231)                                             |  |  |  |
| Conference room bed          |                                     | 226 (218-235)                                             |  |  |  |
| Adjusted linear regression b |                                     |                                                           |  |  |  |
| Traditional bed              |                                     | 227 (226-228)                                             |  |  |  |
| Hallway bed                  |                                     | 240 (240-241)                                             |  |  |  |
| Conference room bed          |                                     | 238 (237-239)                                             |  |  |  |

<sup>&</sup>lt;sup>a</sup> Mean (95% CI); all P < .001.

| complaint  |                       |            |            |  |  |
|------------|-----------------------|------------|------------|--|--|
| Chief      | Traditional           | Hallway    | Conference |  |  |
| complaints | (95% CI) <sup>a</sup> | (95% CI) a | room       |  |  |

Table 3

| Chief<br>complaints | Traditional (95% CI) <sup>a</sup> | Hallway<br>(95% CI) <sup>a</sup> | Conference<br>room<br>(95% CI) <sup>a</sup> |
|---------------------|-----------------------------------|----------------------------------|---------------------------------------------|
| Abdominal           | 249 (247-250)                     | 265 (263-266)                    | 258 (256-259)                               |
| Joint               | 196 (194-197)                     | 208 (207-211)                    | 210 (208-212)                               |
| Fever, general      | 230 (228-232)                     | 233 (232-235)                    | 237 (235-239)                               |
| Head, neck          | 211 (209-214)                     | 239 (236-241)                    | 222 (219-224)                               |

Adjusted mean ED evaluation time, by chief

<sup>&</sup>lt;sup>a</sup> Adjusted mean time in minutes (95% CI); all P < .001; adjusted for the variables listed in Appendix 2.



| Table 4 | Differences | in | adjusted | mean | ED | evaluation t | time <sup>a</sup> |
|---------|-------------|----|----------|------|----|--------------|-------------------|

| Chief complaints | Hallway<br>(95% CI) <sup>b</sup> | Conference room<br>(95% CI) <sup>b</sup> |
|------------------|----------------------------------|------------------------------------------|
| All complaints   | 13.3 (13.2-13.3)                 | 10.9 (10.8-10.9)                         |
| Abdominal        | 16.0 (15.9-16.1)                 | 9.0 (9.0-9.1)                            |
| Joint            | 13.2 (13.1-13.3)                 | 14.5 (14.3-14.6)                         |
| Fever, general   | 3.5 (3.4-3.5)                    | 7.5 (7.4-7.6)                            |
| Head, neck       | 27.4 (27.1-27.7)                 | 10.2 (10.0-10.3)                         |

a Traditional bed referent.

b Difference in adjusted mean time in minutes (95% CI)



## Discussion

- · Exclusively focusing on expanding ED physical space is unlikely to be sole solution
- Mean ED: 11 and 13 mins longer
- Small increase in evaluation time suggest: using nontraditional beds may be preferable to keeping patients in the waiting room until a traditional bed is available

### Discussion

- Factors contribute to longer evaluation time: presume less sick, medical supplies not readily available, private discussion and sensitive exam difficult to do
- Other factors: co morbidities such as dementia, psychosis, higher risk to fall
- Who are less likely to require private exam or invasive procedures, nontraditional beds may be efficient strategy, but other C.C. ma wait longer for traditionals

### Limitations

- Observational study, lack of randomization
- May not be generalizable to all other hospitals
  - no return to nontraditional beds
  - Prevalence and practice of nontraditional bed use have not been reported in detail
  - Nursing and physician staffing patterns
  - Ability to conduct private interviews and e

<sup>&</sup>lt;sup>b</sup> Adjusted for ED and patient level characteristics listed in Appendix 2.

Conclusion

- Hallway and conference room beds experienced modestly longer ED evaluation times, 11 and 13 mins respectively
- Fever patients in nontraditional beds had smallest increases in ED evaluation time
- Selective use of nontraditional beds for patients with specific complaints may be an efficient strategy

• Thank you for your attention!

