Journal Reading

Reporter: 輔大Int 陳詩宇 Supervisor: 王瑞芳醫師 101.11.19

Hyperfibrinolysis in out of hospital cardiac arrest is associated with markers of hypoperfusion V.A. Viersen et al., Resuscitation 83 (2012) 1451–1455

Background

- Cardiopulmonary arrest VS
 Hyperfibrinolysis
- Severity of hyperfibrinolysis associated with the degree of shock and hypoperfusion?

Material and Method

- Inclusion criteria
 - $-Age \ge 18 \text{ y/o}$
 - Witness out of hospital cardiac arrest but not related to trauma

Material and Method

- Exclusion criteria
 - Inability to drawn blood samples
 - Previous haemostatic abnormalities
 - Traumatic arrest
 - Pregnancy
 - Cardiac arrest from septic shock
 - Use of heparin or warfarins
 - Suspected (massive) pulmonary embolism

Material and Method

- Hyperfibrinolysis
 - Definition: maximum lysis of the clot of >20% within 60 min following initiation of rotational thromboelastometry in the EXTEM channel
- Maximum lysis index (ML): Max MCF-Min MCF (%)
- Lysis onset time (LOT): Rx=>lysis of 20%

ible 1 haracteristics of patients without or with hyperfit	rinolysis.		
	No hyperfibrinolysis	Hyperfibrinolysis	P.
N	14	16	
Age (years)	65±18	68 ± 13	ns
Resuscitation parameters			
Median transportation time (min)	44(34-49)	38(32-53)	05
Median CPR time (min)	10(7-18)	36(15-55)	0.001
Median time to 1st output (min)	16(13-28)	44 (33-58)	0.007
Coagulation parameters			
Haemoglobin (mmol/l)	8.3±1.0	85±12	ns
Dismatocrit	0.41+0.05	0.42±0.06	-
aPTT (s)	38±10	54±16	0.005
INR	100.107	10110	05
	olysis associated with sigr	ns of DIC	ns
Fibringen (gll) D-dimers (ag/ml)	23±20	61+21	0.02
	2.3 ± 2.0	0,1221	0.02
Markers for hypoperfusion			
pH	7.17±0.15	6.95±0.11	<0.001
BE	-11.91 ± 6.44	-20.01 ± 3.53	<0.001
Lactate (mmol/I)	8.0±3.7	13.1±3.7	0.001
Median pO2 (kPa)	237 (127-405)	92 (54-124)	0.001
Median pCO ₂ (kPa)	44(35-52)	59 (46-78)	0.03

Result

- Lysis onset time correlates well with CPR time and lactate levels
- Lactate associated with the maximum lysis (r = 0.52; P = 0.04), LI30 (r =-0.61; P = 0.01) and LI45 (r = -0.87; P < 0.001)

Discussion

 A significant part of OHCA patients develop hyperfibrinolysis, in particular in case of signs of hypoperfusion => hyperfibrinolysis may be induced by shock and hypoperfusion solely, without the presence of trauma or massive blood loss

Disucssion

- Degree of hyperfibrinolysis: how to determine?
- Body temperature, a confounding factor?
- Hyperfibrinolysis vs mortality and morbidity

Etomidate is associated with mortality and adrenal insufficiency in sepsis: A meta-analysis

Chee Man Chan et al, Crit Care Med 2012 Vol. 40, No. 11

Background

• To evaluate the effects of single-dose etomidate on the adrenal axis and mortality in patients with severe sepsis and septic shock

Material and Method

- Meta-analysis of RCT and observational studies
- January 1950 and February 2012: EMBASE, Medline, Cochrane Database

Material and Methods

• Inclusion criteria (for mortality)

- randomized or <u>prospective</u> observational approach
- control group
- provided sufficient quantitative data to evaluate mortality (either in–hospital or 28day)

Material and Method

- Inclusion criteria (for adrenal insufficiency)
 - Presence of AI (formal cosyntropin stimulation test or measurement of random cortisol level with a value ≤15 µg/dL)
 - Control group
 - Quantitative data
 - Retrospective or prospective

Results

Mortality
Adrenal insufficiency

VS Etomidate

Mortality

Study/Year (Country- Language)	Intervention	Design	Age, yrs ^o	Patients, n	Male Gender, %	Severity of Illness, (Score) ²	End Point	Mortality in Etomidate Group, n (%)	Mortality in Comparison Group, n (%)	Quality Score	Quality Problems
Cuthbertson et al/2009 (14) (Israel-English)	Etomidate (any dose) vs. other sedatives	Subgroup of double-blind RCT	65 [57-74]	499	66,5	SAPS II (48 [37-62])	All-cause 28-day mortality	41 (42.7)	123 (30,5)	4	Randomization blinding
Tekwani et al/ 2009 (17) (USA-English)	Etomidate vs. other sedatives	Prospective observational cohort	77 [68-84]	106	45.3	Mortality in the Emergency Department of Sepsis (13 (10-16))	All-cause in-bospital mortality	28 (38.0)	14 (43.7)	1	Inclusion/ exclusion criteria; follow- up; adverse effects
Jabre et al/2009 (5) (French- English)	Etomidate (0.3 mg/kg) vs. ketamine (2 mg/kg)	Single-blind RCT	57.9±18.6	76	59.7	SAPS II (50.9±17.9)	All-cause 28-day mortality	17 (41.5)	12 (34.3)	5	Follow-up
Tekwani et al/ 2010 (16) (USA-English)	Etomidate (0.3 mg/kg) vs. midazolam (0.1 mg/kg)	Double-blind RCT	72 [60-82]	122	22.1	SAPS II (54±16)	All-cause in-hospital mortality	26 (36)	21 (43)	7	None
Cherfan et al/ 2011 (22) (Saudi Arabia- English)	Etomidate (20 mg) vs. other sedatives	Subgroup of double-blind RCT	61.0 ± 12.0	62	59.7	Sequential Organ Failure Assessment (15.2 ± 3.3)	All-cause 28-day mortality	21 (91)	33 (84)	6	Randomization

Mortality

Adrenal Insufficiency

Adrenal Insufficiency

Study/Year (Country- Language)	Intervention	Design	Age, yrs*	Patients, n	Male Gender, %	Severity of Illness (Score)*	End Point [Time Frame for AI Testing After Etomidate Dose]	AI in Etomidate Group, n (%)	AI in Comparison Group, n (%)	Quality Score	Quality Problems
Cuthbertson et al/2009 (14) (Israel- English)	Etomidate (any dose) vs. other sedatives	Subgroup of double-blind RCT	65 [57-74]	499	66.5	SAPS II(48 [37-62])	AI by CST (60 mins after 0.25 mg tetracosactrin)	58 (61.0)	175 (44.6)	4	Randomization blinding
Jabre et al/2009 (5) (French- English)	Etomidate (0.3 mg/kg) vs. ketamine (2 mg/kg)	Single-blind RCT	57.9 ± 18.6	46	59.7	SAPS II(50.9 ± 17.9)	[within 72 hrs] AI by CST (30 and 60 mins after cosyntropin) [within 48 hrs]	21 (80.1)	9 (45.0)	5	Follow-up
Kim et al/2008 (18) (Korean- English)		Single-center retrospective cohort	63.6 ± 13.3	65	72.3	Acute Physiology and Chronic Health Evaluation II (27.0 ± 5.9)	AI by CST (0.25 mg tetracosactrin) [within 24 hrs]	21 (84.0)	19 (48.0)	3	Randomization follow-up
Mohammad et al/2006 (19) (USA- English)		Single-center retrospective cohort	60.1 ± 17.3	152	54.6	None	AI by CST (30 and 60 mins after cosyntropin) [at least 24 hrs after etomidate]	29 (76.0)	58 (51.0)	3	Randomization follow-up
Dmello et al/2010 (15) (USA- English)		Single-center retrospective cohort	64.5±18.0	126	54.9	Acute Physiology and Chronic Health Evaluation II (21.6 ± 8.2)	AI by CST (30 and 60 mins after 0.25 mg cosyntropin), random cortisol level (within 72	16 (24.0)	13 (22.0)	2	Randomization follow-up; inclu sion/exclusion

Discussion and Conclusion

- Long term effects of etomidate not been evaluated yet
- Etomidate in pt with sepsis associated with higher mortality (1.2X) and AI
- Etomidate should be warranted when in use

Limitation

- Meta-analysis, confounders
- Etiology of AI, definition of AI
- Mortality evaluated differed between studies