

Protocol

- NE doses maintain a baseline MAP of 65 ± 2 mm Hg, basal measurements were performed twice, 15 minutes apart
- NE doses were increased to obtain an MAP of 75 \pm 2 mm Hg, 30 minutes taking measurements
- increased to reach an MAP of 85 ± 2 mm Hg within 15 minutes
- then decreased to return to an MAP of 65 ± 2 mm Hg (no other change in treatment was allowed)

Measurements

- near-infrared spectroscopy (NIRS) on the thenar eminence to measure tissue hemoglobin oxygen saturation (StO2)
- vascular occlusion test (VOT) was used to measure different variables reflecting local metabolic demand and microcirculatory function

Measurements

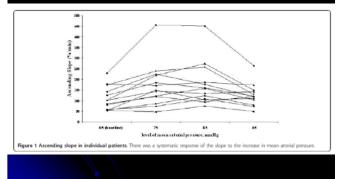
- inflating a pneumatic cuff around the upper arm to 50 mm Hg above the systolic pressure for 3 minutes
- The descending slope of the StO2 and the nirVO2I (the reverse descending slope multiplied by the average THI during the first occlusion minute) estimate regional tissue oxygenconsumption (VO2).
- The ascending slope of the StO2 and the reactive hyperemia reflect microcirculatory reactivity

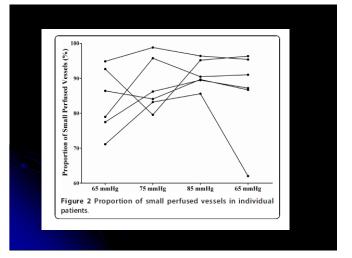
Measurements

 In six patients, assessed the sublingual microcirculation using the SDF imaging technique (two perfusion indices: the microvascular flow index (MFI) and the vessel density

	-
Result	S
Table 1 Clinical data	
Parameter	Value
Age in years, mean (95% CI)	63.3 (55.0-71.6)
Males/females	9/4
Weight in kilograms, mean (95% CI)	80 (69-91)
Body mass index, mean (95% CI)	27.3 (22.6-32.0)
APACHE II score, mean (95% CI)	22.7 (18.9-26.5)
SOFA score, mean (95% CI)	12.8 (11.4-14.2)
Source of infection, number (percentage)	
Abdominal	6 (46)
Lung	5 (39)
Unknown	2 (15)
Comorbidities, number (percentage)	
Chronic hypertension	8 (62)
Diabetes	5 (38)
Chronic renal failure	2 (15)
ICU length of stay in days, median (25-75% IQR)	17 (6-27)
28-day mortality, number (percentage)	2 (17)

Hemodynamic and metabolic variables


	65 mm Hg	75 mm Hg	85 mm Hg	65 mm Hg
Norepinephrine, µg/minute	17.3 (5.9-28.6)	24.5 (9.5-39.5)*	32.7 (14,0-51,4) ^a	22,4 (11,0-33,8)
Mean arterial pressure, mos Pig	66.0 (65.1-66.8)	75.9 (73.5-78.3)*	863 (843-68/4) ^a	66.2 (65.1-67.3)
Heart rate, beats per minute	93.5 (83.9-103.1)	91.4 (81.4-101.5)	928 (82.1-103.6)	942 (81.7-106.7)
Cardiac output, liters per minuRe	6.1 (5.4-6.8)	6.5 (5.7-73)	6.7 (5.9-7.6)*	6.1 (5.4-6.8)
Mean pulmonary arterial pressure, mm Hig	29 (24,9-33.1)	30.3 (26-34.7)	32.2 (27.9-36.5)*	29.4 (24,8-34.0)
Pulmonary artery occlusion pressure, mm Hg	15.3 (12.7-18)	15.4 (12.7-18.2)	16.1 (13.5-18.6)	14.6 (12.2-17.1)
Central venous pressure, mm Hg	12.0 (9.8-14.3)	12.8 (10.3-15.2)	13.4 (11.1-15.7) ^a	12.4 (103-14.5)
Systemic vascular resistance, dyne/second per cm	716 (647-786)	803 (711-896)*	902 (793-1,010)*	726 (645-806)
Pulmonary vascular resistance, dyne/second per cm ⁻⁵	181 (141-222)	188 (141-234)	197 (150-244)	184 (134-234)
Change in pulse pressure, percentage	2 (15-45)	2.5 (1-8)	1.5 (D-4)	4 (3-7)


Hemodynamic and metabolic variables

	65 mm Hg	75 mm Hg	85 mm Hg	65 mm Hg
Hemoglobin, g/dL	8.9 (8.0-9.7)	9 (8.2-9.9)	8.9 (7.9-10.0)	8.8 (7.8-9.8)
Temperature, °C	37.3 (36.5-38.0)	37.3 (365-38.1)	37.3 (36.6-38.1)	37.4 (36:6-38.2)
Lactate, mEg/L	2.3 (1.5-3.1)	2.2 (1.4-2.9)*	2.1 (1.4-2.8) ^a	2.2 (1.5-3.0)
SaO ₂ , percentage	97.2 (96.4-98.1)	975 (967-983)	97.9 (96.9-98.9)	97.8 (96.9-98.7)
SvO ₂ , percentage	70.6 (67.9-73.2)	72.3 (69.3-75.3)	75.9 (71.7-80.1) ⁸	69.0 (65.8-72.2)
DO ₂ mL/minute	728 (633-824)	806 (678-933)	826 (687-965)*	721 (623-819)
VO ₂ , mL/minute	197 (175-220)	203 (173-232)	177 (149-204)	208 (179-238)
EQ ₃ mL/minute	275 (24.6-30.4)	25.8 (22.6-29.0)	22.5 (18.3-26.7) ^a	29.4 (26.1-32.7)

Table 4 Near-infrared spectroscopy and sidestream dark field variables 65 mm Hg 75 mm Hg 85 mm Hg 65 mm Hg Kovinables SiO, baseline, percentage Descending slope, percentage/minute int/O, arbitray units Delta SiO, percentage Macrandsing slope, percentage/minute Macrandsing slope, percentage/metal Sinal SiO, percentage/metal Sinal SiO, percentage/metal Sinal SiO, percentage/metal Sinal SiO, percentage Sinal SiO, 82.5 (79.0-85.9) -14.8 (-18.0 - -11.6) 139 (114-165) 7.4 (5.3-9.5) 0.11 (0.05-0.16) 111 (80-141) 81.0 (77.0-85.0) -14.5 (-18.9 - -10.0) 122 (98-146) 8.4 (52-11.6) 0.12 (0.09-0.15) 172 (115-228)* 812 (77.6-84.7) -16.4 (-22.0 - -10.9) 153 (109-196) 7.7 (5.4-9.9) 0.10 (0.08-0.14) 177 (122-232)⁴ 778 (736-82.1) -157 (-219 - -9.4) 129 (93-165) 74 (5-9.7) 0.10 (007-0.15) 114 (94-134) 12.8 (10.5-15.0) 10.7 (85-12.9) 11.0 (86-13.3) 9.1 (6.4-11.9) 85.9 (80.1-91.6) 95.5 (93.6-97.4) 83.6 (76.1-91.0) 2.4 (2.2-27) 13.2 (11.1-15.3) 11 (8.5-13.4) 12.0 (9.4-14.5) 9.8 (6.9-12.8) 89.5 (83.7-95.2) 95.4 (88.8-102.0) 87.9 (81.8-94.0) 27 (2.4-29) 143 (12.9-15.7) 11.6 (10.1-13.1) 13.2 (11.9-14.5)⁸ 10.7 (90-12.3) 92.6 (89.9-95.3) 97.5 (55.2-99.7) 91.1 (87.9-94.3) 2.9 (2.8-2.9)⁸ 13.7 (11.0-16.4) 11.7 (9.0-14.3) 12.1 (9.2-14.9) 10.3 (7.1-13.5) 87.7 (79.9-56.6) 89.8 (82.7-96.9) 86.4 (76.3-96.5) 2.5 (2.2-2.9) 2/miles PTR_classifier 2A (22-27) *#ccmvascular Blow Index 2A (22-27) *# r005 versus baseline. AUC, area under the curve: NIRS, near-infrared spe hemoglobin index during the first occlusion minute; PPV, proportion of per nirVO₂I, reverse ils; PVD; perfuse slope multiplied by the average tissue sity; SDF, sidestream dark field; StO $_{\rm ls}$ the

Near-infrared spectroscopy variables

 Discussion The major finding: MAP from 65 to 75 and 85 mm Hg by titrating NE an increase in cardiac output, a decrease in blood lactate level, and an improvement in microcirculatory function NE, strong alpha-adrenergic properties, whether this vasoconstriction is not deleterious for the microcirculation increase in cardiac output could be explained by the beta-1 adrenergic action of NE 	 Discussion no significant increase in VO2 in our study, blood lactate concentrations decreased slightly With NIRS, impairment in tissue reperfusion after hypoxia has been shown to be correlated with the severity of sepsis and with outcome
Discussion	Discussion
• StO2 was not affected by the different arterial pressure levels and remained lower than in a healthy population . The absence of changes in StO2 suggests that NIRS changes were not the consequence of the increase in cardiac output	 a relatively small number of patients, had strict enrollment criteria, to all patients may be problematic this study investigated only immediate changes, the MAP is maintained above 65 mm Hg for
• Our results contradict those of some previous studies, dopamine in addition to NE, fluid repletion or in the timing of the study, patient	 these data cannot be extrapolated to other

these data cannot be extrapolated to other vasopressor agents

Conclusions

selection

- Increasing MAP above 65 mm Hg with higher doses of NE can result in increased cardiac output, improved microcirculatory function, and decreased lactate concentrations
- Additional studies should to develop criteria for determining an individually adapted arterial pressure and to evaluate the long-term effects