
Continuous infusion versus intermittent bolus dosing of vecuronium in patients receiving therapeutic hypothermia after sudden cardiac arrest
Pharmacotherapy 2011;31(12): 1250-1256

20120220
Speaker: R2 游姿學
Supervisor: V.S. 王瑞芳

INTRODUCTION 236000-325000 OHCA per year in USA Sudden cardiac arrest (SCA) would result in anoxic brain injury Therapeutic hypothermia: improve neurologic outomes 50-60% of patient shiver during cooling and rewarming phases that cause: Increased O₂ consumption Production of CO₂ Respiratory acidosis Affect myocardial oxygen balance Produce heat

To prevent shiver.... Using neuromuscular blocker, e.g. vecuronium Vecuronium: Intermediate-acting agent Useful for postoperative shivering Lack adverse CV effects Undergo hepatic and renal clearance Sladen et al. in 1995 Patients undergoing cardiopulmonary bypass surgery Vecuronium IV 0.1 μg/kg st, then 1.0 μg/kg/min

IN HYPOTHERMIA • Vecuronium was used by the authors since 2004 during hypothermia therapy: • Cooling: Arctic Sun Cooling System (Medivance Inc., Louisville, CO) • Target temp: 33°C for 24 hours • Vecuronium infusion, 0.8 μg/kg/min, started 2 hours after cooling or shivering occurred • Use train-of-four (TOF) test to measure the degree of NM blockade Q1H until it was consistent for 3-4 hours, then check Q2H • 1/4-2/4 twitches • If 0/4 twitches: stop vecuronium; if >0/4, start vecuronium at half the previous infusion rate • Discontinued vecuronium after rewarming to 36°C

GOAL OF THIS PAPER

To compare the effect of intravenous continuous infusion versus intermittent bolus doses
of vecuronium in therapeutic hypothermia after sudden cardiac arrest (SCA).

STUDY DESIGN AND PATIENT SELECTION

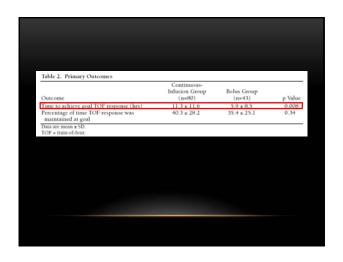
- Retrospective, single-center (Memorial Hermann-Texas Medical Center, Houston)
- Patient ≥18 y/o who were treated therapeutic hypothermia after SCA
- Exclusion: no documented TOF measurement, no documented administration of vecuronium, died within 12 hours of initiation of the hypothermia protocol

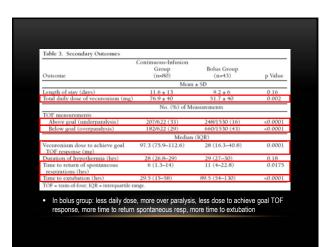
PATIENT COHORTS

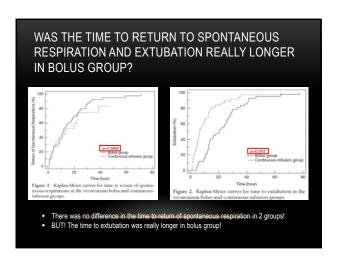
- Vecuronium continuous-infusion group
 - During Jan 1, 2004 to Dec 31, 2007
 - Rate: 0.8 μg/kg/min
 - Goal TOF response 1/4 to 2/4 twitches
 - If TOF 0/4 twitches: stop the infusion; if > 0/4, resumed the infusion at half rate
 - Check TOF Q1H; if consistent for 3-4 hours, check Q2H
- Vecuronium bolus group
 - During Jan 1, 2008 to Sep 30, 2009
 - Dose: 0.05 mg/kg Q1HPRN if any shivering in the ED and CATH room
 - Dose: 0.05 mg/kg Q2HPRN for TOF 1/4 to 2/4 or visible movement in ICU
 - Check TOF Q2H

STUDY OUTCOMES

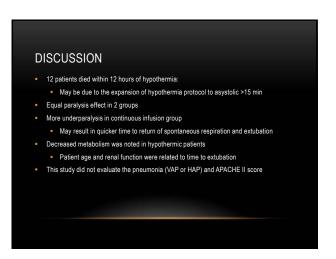
- Primary outcomes
 - Time to achieve goal TOF response
 - The percentage of time with goal TOF response
- Secondary outcomes
 - Total daily dose of vecuronium
 - Vecuronium dose needed to achieve goal TOF response
 - Percentage of TOF measurements above or below goal
 - Tim to return of spontaneous respirations
 - Time to extubation


STATISTICAL ANALYSIS


- X test (卡方檢定): to compare categoric data (自變數、依變數均屬類別變數時, 連用X- test 來檢驗其差異顯著性)
- Student T test to compare continuous data in 2 normal distribution groups (用來檢定兩個標準差未知之常態分配的平均順是否相等)
- Mann-Whitney U test: to compare continuous data in 2 non-normal distribution groups (為常用來替代 t 檢定之無母數統計法, 用於非常態的分布, 或樣本數不大, 或有違 t 檢定的假設時)
- P value <0.05: statistically significant difference


RESULTS

- 269 patient was reviewed, 146 were excluded in the continuous infusion group and bolus group:
 - 20+41: no TOF measurement
 - 16+49: no dose of vecuronium documented
 - 0+20: died less than 12 hours
- Total 123 patients were included
 - 80: continuous-infusion group
 - 43: intermittent-bolus group


	Continuous- Infusion Group	Bolus Group	
Characteristics	(n=80)	(n=43)	p Value
	Mean	± SD	
Age (yrs)	57.8 ± 16.4	57.3 ± 16.3	0.89
Weight (kg)	90 ± 25	84 ± 18	0.13
Body mass index	29.9 ± 8.1	28.9 ± 7.2	0.58
Time until hypothermia initiation (hrs)	8.7 ± 4.5	7.4 ± 5.5	0.16
	No. (%)	of Patients	
Male	52 (65)	15 (35)	0.85
Race-ethnicity			0.31
Caucasian	26 (33)	18 (42)	
African-American	40 (50)	14 (33)	
Hispanic	11(14)	9(21)	
Other	3 (4)	2 (5)	
Underlying arrhythmia			< 0.0001
Ventricular fibrillation or tachycardia	73 (91)	25 (58)	
Pulseless electrical activity	5 (6)	3(7)	
Asystole	2(3)	15 (35)	
Liver dysfunction	2(3)	1(2)	0.58
Renal dysfunction	18 (23)	10 (23)	0.89

WHY WAS THE TIME TO EXTUBATION LONGER IN THE BOLUS GROUP? Table 4. Time to Extubation by Logistic Regression Analysis Standard Error 95% Confidence of the Mean Interval p Value Age 0.015 0.015 0.936-0.99% 0.027 Renal dysfunction -2.27 1.064 0.012-0.829 0.033 Age and renal function affected the extubation time!

LIMITATIONS

- A retrospective review
- Inconsistent documentation of TOF measurements and vecuronium doses
 - Therefore, many patients were excluded from the study
- The hospital- or ventilator-acquired pneumonia, underlying pulmonary disease and acuity
 of illness could also affect the time to return spontaneous respirations.
- Inability to control the quality of TOF documentation
- No data for length of stay (LOS) in ICU and in hospital

CONCLUSION

- No guidelines for the usage of NM blocking agents
- Intermittent bolus of vecuronium would result in:
 - Faster to goal TOF response
 - Less dose to achieve goal TOF response
 - Less daily dose
 - More overparalysis
 - Slower return of spontaneous respiration (median) and extubation (but age and renal function were more effective)

THANKS

QUESTION 1: DR. LO

- 這篇paper的Table 3
- 其中 TOF measurements, continuous 組共有622次, bolus是1530次, 但是continuous 組的病人其實比bolus多呢 (80 vs. 43)
- 內文有提到continuous 組的測量是開始load上後每小時測到平衡, 若變成0/4 就減半dose再每小時測量 (但意思似乎不是固定每小時量, 而是發現abnormal才 去呼動監測; 相對於continuous組。bolus組在CICU裡就固定兩小時測一次, 兩者 在發動measurement這個動作上似乎存在有bias, 而不能單單用p<0.001就說是有 意義。

QUESTION 2: DR. CHOU

- study中放了很多parameter例如age, liver function, renal insufficiency
- 但似乎沒有針對這些paramenter對實驗結果造成的影響誤差多做著墨
- 只有在result的最後一行提到 "intermittent bolus dosing was dependent on age and renal function"
- 我的問題是:如果真要把這些parameter加進去看跟研究結果的correlation-該如何設計或是用何種統計檢定方式會比較洽當?

QUESTION 3: DR. YU

- 這篇 paper 是在討論 Continuous 或 Intermittent 注射Vecuronium。
- 不知道文中是否有提及Vecuronium是從CVC或是從peripheral IV投藥?
- 又,不同的投藥途徑是否有可能對結果產生不同的影響呢?
- · 謝謝!

QUESTION 4: DR. HSU

- 1. 達到TOF = 0 之後會有何種side effect? 若有, 那用bolus會不會造成此種side effect機會增加
- 2. 此篇papaer結論看起來似乎持續infusion那組並無什麼優點?是否表示可改 為用bolus即可?