Acute abdomen: CT or ultrasound?

Chiu-Mei Lin, MD, Ph.D Department of Emergency Medicine Shin Kong Wu Ho-Su Memorial Hospital

Learning objective

Benefits of CT in the patient present with acute abdomen
 When do you need the CT scan?
 When do you need ultrasound?

Case: abdominal pain for 10 days

> 58 y/o male patient present with RUQ pain for 10 days, no fever
> Blood WBC: 11200, Seg.: 86%
> Past history: DM

Choice of computed tomography (CT) versus ultrasound Radiation dose > Operator's level of training Patient's age and sex Condition of patient's cooperation Obesity or not > Other situations

> High sensitivity > High specificity > Accuracy > Availability > Not real-time, but dynamic study by arteryvein-delayed phase Lack of operator dependence

Study Type	Relevant Organ	Relevant Organ Dose* (mGy or mSv)	
Dental radiography	Brain	0.005	
Posterior-anterior chest radiography	Lung	0.01	
Lateral chest radiography	Lung	0.15	
Screening mammography	Breast	3	
Adult abdominal CT	Stomach	10	
Barium enema	Colon	15	
Neonatal abdominal CT	Stomach	20	

* The radiation dose, a measure of ionizing energy absorbed per unit of mass, is expressed in grays (Gy) or milligrays (mGy); 1 Gy=1 joule per kilogram. The radiation dose is often expressed as an equivalent dose in sieverts (Sv) or millisieverts (mSv). For x-ray radiation, which is the type used in CT scanners, 1 mSv=1 mGy.

NEJM, 2007

Ultrasound

Inexpensive > Portable > Safe No requirement for radiation > Dynamic and real-time survey > Operator dependence: solid or hollow organ, experiences

CT for appendicitis

CT for appendicitis has a higher sensitivity (90%-100%) and specificity (95%-97%) Radiology 2000;215:337-48

CT use in suspected acute appendicitis has greatly increased over the past several years. The dramatic increase in CT use at our institution has not resulted in dramatic decreases in negative appendectomy rate or statistically significant changes in perforation rate.

Table 1. Sensitivity and Specificity of Clinical Findings for the Diagnosisof Acute Appendicitis.

Finding	Sensitivity	Specificity	Study	
	percent			
Signs Fever Guarding Rebound tenderness Indirect tenderness (Rovsing's sign) Psoas sign	67 39–74 63) 68 16	69 57–84 69 58 95	Wagner et al. ⁸ Wagner et al., ⁸ Jahn et al. ⁹ Wagner et al. ⁸ Jahn et al. ⁹ Wagner et al. ⁸	
Symptoms Right-lower-quadrant pain Nausea Vomiting Onset of pain before vomiting Anorexia	81 58-68 49-51 100 84	53 37–40 45–69 64 66	Wagner et al. ⁸ Wagner et al., ⁸ Jahn et al. ⁹ Wagner et al., ⁸ Jahn et al. ⁹ Wagner et al. ⁸ Wagner et al. ⁸	

Figure 1. Endovaginal Ultrasonogram in a 46-Year-Old Premenopausal Woman with Right-Lower-Quadrant Pain, Adnexal Tenderness, and an Elevated White-Cell Count.

A carefully performed ultrasonographic examination of the right lower quadrant failed to show the appendix or the cause of pain. Endovaginal ultrasonographic examination of the right adnexa shows a fluid-filled, dilated, tubular structure (arrows), which is consistent with the presence of a hydrosalpinx or pyosalpinx. The patient underwent exploratory laparotomy, and a pyosalpinx was identified. Salpingo-oophorectomy was performed, and the patient had an uneventful recovery.

Figure 2. CT Scan in an 18-Year-Old Man with Abdominal Pain and Nausea.

CT examination of the right lower quadrant after the administration of intravenous and enteric contrast material shows a dilated, fluid-filled appendix with a thickened wall (arrows). There are inflammatory changes in the adjacent fat tissue (arrowheads). Laparotomy confirmed the diagnosis of acute appendicitis, and an appendectomy was performed. The patient had an uneventful recovery.

Swelling blinded-end loop Swelling of cecum

3. Perifocal inflammation

Figure 3. Clinical Algorithm for the Evaluation of Pain in the Right Lower Quadrant.

The algorithm is for suspected cases of acute appendicitis. If gynecologic disease is suspected, a pelvic and endovaginal ultrasonographic examination should be considered.

Choice CT or ultrasound

 Diagnosis
 Surveillance
 Monitoring disease response to therapy
 Exacerbation or dynamic survey: ultrasound

Abdominal CT

Abdominal CT can reveal:

- Appendicitis
- Gallstones or biliary sludge in the gallbladder or bile ducts
- Kidney stones
- Enlarged lymph nodes anywhere in the abdominal cavity
- Thickened intestinal wall, like in lymphoma
- Diverticulosis
- > Abdominal tumors
- Enlarged liver, spleen or kidneys
- Location and spread of abdominal cancers

However, DDx is concerned (CT)

> Mis- or delayed diagnosed? > Unknown diagnosis? > Young female patient, GI or GYN problem? Intractable abdominal pain (infarction or vascular lesion?) > High risk patient (sometimes...VIP) > With or without contrast medium?

Case: abdominal pain for 1 day

62 y/o male patient present with upper abdominal pain for 1 day, no fever
Blood WBC: 9600, Seg.: 86%
Past history: lymphoma

Choice of ultrasound

Solid organ lesion
 Hollow organ lesion (training and education)— operator dependence
 Trauma patient survey and follow-up
 Ascites localization

Non-contrast abdominal CT's can detect:

- Renal/ureteral stones
- Bowel obstruction (SBO and LBO)
- Perforated viscus
- Appendicitis

- Cholecystitis
- Pancreatitis
- Diverticulitis
- AAA or rupture

Take home message

Emergency CT scan for acute abdomen: peritonitis, suspect bowel obstruction, vascular lesion (SMA occlusion etc)

Ultrasound: FAST, solid organs, hollow organ (need training and education)