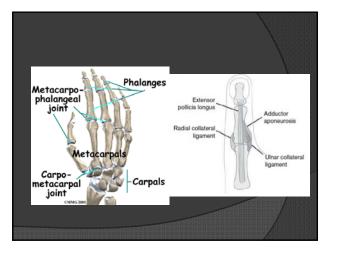
# FOUR HAND INJURIES NOT TO MISS: AVOIDING PITFALLS IN THE EMERGENCY DEPARTMENT

European Journal of Emergency Medicine 18: 186-191

報告者: R2游姿寧 指導者:F2吳亮廷 1000816

# Introduction

- Upper limb injuries are common in ED
  50% has fractures
- Distal radius, elbow and shoulder fractures: usually not be missed
- BUT! How about the HAND?


# Four hand injuries not to miss

- Ulnar collateral ligament injury
- Base of metacarpal: Bennett's fracture
- Volar plate avulsion fracture
- Flexor digitorum profundus avulsion

# Ulnar collateral ligament injury

### Thumb:

- Pinching, grasping
- 50% of hand function
- Stabilized by radial collateral ligament and ulnar collateral ligament (UCL)



# Ulnar collateral ligament injury

### • UCL:

- More frequently injured
- Sudden forced abduction of the thumb
- Trauma, contact sports
- 2 portions: proper ligament and accessory ligament
- Skier's thumb: acute injury
- Gamekeeper's thumb: chronic laxity

# Diagnosis of UCL injury

- History:
  - sporting injury
  - Pain at the base of the thumb
- PE:
  - Reduced ROM at MCP joint
  - Maximal tenderness over the ulnar aspect
  - Stress examination:
    - Lateral (valgus) stress: angulation >35°, or >15° than the uninjured side → complete rupture
    - Flexion: proper collateral ligament rupture
    - Extension: accessory collateral ligament

# Diagnosis of UCL injury

- Complete v.s. incomplete rupture
  - Complete rupture:
  - Both accessory and proper collateral ligaments rupture
  - Often associated with Stener lesion (50%)
  - Need surgery
  - Incomplete rupture:
  - immobilization



# Diagnosis of UCL injury

- X-ray: NOT diagnostic for UCL injury
  - Should be obtained Before stress tests
  - To exclude nearby bone fracture
  - True lateral radiography: dorsal capsular and collateral ligament tear → palmar subluxation → need surgery

# For UCL injury

- History and PE!
- All suspected UCL injuries: immobilization
- Untreated UCL injuries → affect hand function, decrease power of hand, early OA

# Base of metacarpal: Bennett's fracture

- 2 part, oblique intraarticular fracture subluxation of base of thumb metacarpal
- Falls → axial load on a flexed thumb metacarpal
- The most common first metacarpal fracture



# Bennett's fracture

- Even a 1 mm malunion can result in residual symptoms: early OA, pain, stiffness
- Best treated with surgery

# Diagnosis of Bennett's fracture

- PE:
  - Pain and swelling to the thumb base
  - Exam the UCL and scaphoid injury
- X-ray:



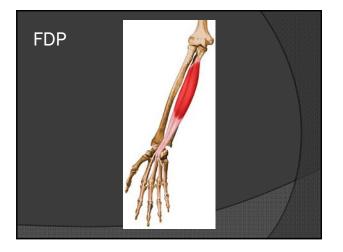
# Volar plate avulsion fracture

- Proximal interphalangeal (PIP) joint:
  - A hinge joint
  - The largest ROM in the hand (0-110°)
  - Stabilized by several important structure: including the volar (palmar) plate



# Diagnosis of volar plate avulsion fracture

- History:
  - Forced hyperextension
  - Deformity
  - Common in athletes, ball sports
- PE:
  - Pain, bruising, swelling, reduced ROM in PIP joint


# V sign V sign Avulsion fracture is characteristic. Openation of the second seco

# Treatment for volar plate injury

- Dorsal or palmar dislocation: should be reduced, and repeat X-ray is obtained
- A volar plate injury with small fracture, no joint subluxation: conservative Tx
- Or: early OA, stiffness, loss of function

# Flexor digitorum profundus avulsion

- Flexor digitorum profundus (FDP)
  - Flexion of DIP
  - Origin: forearm, insertion: palmar base of the distal phalanx
  - Avulsion at insertion:
    - Often normal X-ray
    - The finger is able to actively flexion at PIP and MCP, but not at DIP
    - o Commonly misdiagnosed!!



# Diagnosis of FDP injury

### • History:

- Injury when sporting, Sudden extension of an actively flexed DIP joint
- Most common in the ring finger
- Avulsion in insertion
- Rugby jersey finger
- PE:
  - Swollen, bruised distal digit
  - To exam FDP function

# X-ray for FDP injury

• Useful, but not diagnostic



# Treatment for FDP injury

- No any role for conservative treatment!
- The tendon would retract!
- Primary repair is impossible after 7-10 days

# Conclusion

- In thumb injuries, to exam RCL and UCL in Both hands
- In PIP joint injuries: need true lateral Xray
- FDP avulsion: clinical diagnosis; all need surgery
- Bennett's fracture: usually need surgery
- All fracture need 2 projections

# PRIMARY CLOSURE OF CUTANEOUS ABSCESSES: A SYSTEMATIC REVIEW

American Journal of Emergency Medicine (2011) 29: 361-366

# Background

- Patients with cutaneous abscess doubles over the last decade
- Community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA) also increased
- How to treat the cutaneous abscess?

# Treatment of cutaneous abscess

- Conventional treatment:
  - Incision and drainage (I&D) + secondary healing
- How about the primary closure??
  - Ellis (1951): heal faster, few complication
  - Some studies in Europe, Africa, Asia and Australia ever mentioned about it
    - Speed healingReduce pain
  - Improve scarring

# Goal of this paper

- Primary closure V.S. secondary healing
- Speed of healing and rate of recurrence

# Methods

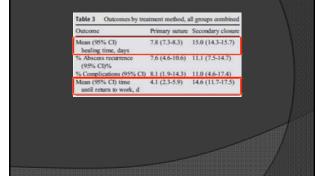
- Search MEDLINE (PubMed), EMBASE, Cochrane Library
- Keywords: primary closure, abscess, incision and drainage, soft tissue infection
- Exclusion: review articles, retrospective analyses, noncomparative studies, abstracts

# Results

### 543 articles

- 33 articles: primary closure after I&D, total 2000 patients
  - 7 RCT

# Jadad score for RCT


| item                                                                                                                                                     | Score |                   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------------|
| Was the study described as randomized (including "randomly",<br>"random", "randomization")?                                                              | 1     |                   |
| was the method used to generate the sequence of<br>randomization described and was it appropriate (e.g. table of<br>random numbers, computer-generated)? | 1     |                   |
| Was the study described as double-blind?                                                                                                                 | 1     |                   |
| Was the method of double-blinding described and was it<br>appropriate(e.g. identical placebo, active placebo, dummy)                                     | 1     |                   |
| Was there a description of withdrawals and dropouts?                                                                                                     | 1     |                   |
| Deduct 1 point if the method used to generate the sequence of randomization was described but was inappropriate                                          | -1    | $\mathcal{A}^{-}$ |
| Deduct 1 point if the study was described as double-blind but the method of blinding was inappropriate                                                   | -1    | /                 |
| Jadad score ≥ 3 → high quality                                                                                                                           |       |                   |

| Table 1 Rasdomized clinical trials included in meta-analysis |                                                                                                                                         |                                       |                                         |                                                                                   |             |  |  |
|--------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-----------------------------------------|-----------------------------------------------------------------------------------|-------------|--|--|
| Source                                                       | Location of abscesses*                                                                                                                  | Primary closure<br>(no. of abscesses) | Secondary closure<br>(no. of abscesses) | Outcomes                                                                          | Jadad score |  |  |
| Abraham et al [15], 1997                                     | Head and neck (8),<br>trank and limbs (13),<br>buttock, anogenital regim,<br>groin (3), aniliary (4),<br>breast(3).                     | 32                                    | 29                                      | Healing at 1 wk,<br>healing at 1 mo                                               | 2           |  |  |
| Edino et al [1], 2001                                        | Becast (35), glutosl 29),<br>head and neck (14),<br>muscle (10), perianal (10),<br>axilla (2), inguinal(1),<br>trunk (4), pilonidal (1) | 51                                    | 55                                      | Time to healing,<br>recurrence rate,<br>quality of scars, cost                    | 0           |  |  |
| Leaper et al [16], 1976                                      | Perianal, ischiorectal                                                                                                                  | 110                                   | 109                                     | Time to beading,<br>time off work,<br>recommendate                                | 2           |  |  |
| Martie and<br>Harvey [17], 1977                              | Limbs, perianal, breast,<br>axilla, face, neck, buttock                                                                                 | 121                                   | 98                                      | Time to healing,<br>recurrence rate                                               | 1           |  |  |
| Simons et al [19], 1982                                      | Anogenital (39), head and<br>neck (21), anilla (27),<br>breast (5), trunk/limb (22)                                                     | я                                     | 60                                      | Time to bealing,<br>no. of return visits,<br>recurrence rates                     | 0           |  |  |
| Stewart et al [7], 1985                                      | Head and neck (33),<br>tranks (20), limbs (16),<br>pilonidal (21), periocal (47)                                                        | 64                                    | 73                                      | Time to bealing,<br>time off work,<br>no. of hospital visits,<br>recurrence rates | 8           |  |  |
| Visvanathan (18), 1988                                       | Sheletal mascle (59)                                                                                                                    | 23                                    | 36                                      | Time to healing,<br>length of bospital stay,<br>recurrence rate                   | 1           |  |  |

# Use of pre-OP anti, analgesia/anesthesia and method of primary closure

| Study                | Preoperative<br>antibiotic                       | Analgesia/<br>anesthesia | Type of suture                            |  |
|----------------------|--------------------------------------------------|--------------------------|-------------------------------------------|--|
| Abraham, 1997        | IV<br>flackstacillin                             | NA                       | Nonabsorbable<br>vertical mattress        |  |
| Edino, 2001          | IV ampicillin<br>and cloxacillin                 | Ketamine<br>anesthesia   | Monofilament<br>nylos vertical<br>matress |  |
| Macfie, 1977         | IV lincomycin<br>in half of the<br>petients only | NA                       | Nylon mattess                             |  |
| Leaper, 1976         | IV ampicizion<br>and cloxacizin                  | General<br>anesthesia    | Monofilament<br>vertical mattress         |  |
| Simmo, 1982          | IV or IM<br>clindamycin                          | General<br>anesthesia    | Monofilament<br>sotures                   |  |
| Stewart, 1985        | Not given                                        | General<br>anesthesia    | Monofilament<br>nylon mattros             |  |
| Viccunathan,<br>1988 | IV closecilin                                    | NA                       | Cheomic cutgat<br>mattress                |  |

# Outcomes by treatment method



# Conclusion

- Primary closure after I&D:
  - faster healing
  - Low rates of abscess recurrences
- Not associated with any significant adverse events
- Using antibiotic? Controversial
- Who does the I&D?
  - Mostly: by general or colorectal surgeons under GA
    - Complete drainage of abscess and curettage of its walls → successful primary closure!

## Results

- After primary closure, all patients shoulb be seen within 48 to 72 hours
  - Recurrence or spread: remove the suture and drain the abscess
- For CA-MRSA
  - Not in any of the 7 RCT
  - Some study favor I&D + secondary closure

# Conclusion

Primary closure of I&D results in factors
 Instant and similar the ownerses

