Principles of Mechanical Ventilation

The Basics

Origins of mechanical ventilation

The era of intensive care medicine began with positive-pressure ventilation Negative-pressure ventilators

- ("iron lungs") Non-invasive ventilation first used in Boston Children's Hospital in 1928
- Used extensively during polio outbreaks in 1940s 1950s
- Positive-pressure ventilators
- Invasive ventilation first used at Massachusetts General Hospital in 195<u>5</u>
 - Now the modern standard of mechanical ventilation

97

Outline

Theory

- Ventilation vs. Oxygenation Pressure Cycling vs. Volume Cycling
- Modes
- Ventilator Settings
- Indications to intubate
- Indications to extubate
- Management algorithim
- FAQs

Principles (2): Oxygenation

The primary goal of oxygenation is to maximize O_2 delivery to blood (P_aO_2)

- Alveolar-arterial O₂ gradient
- Alveolai -artenar 2-2 (P_AO₂ P_aO₂) Equilibrium between oxygen in blood and oxygen in alveoli
- A-a gradient measures efficiency
 of oxygenation
- P_aO₂ partially depends on ventilation but more on V/Q matching
- Oxygenation in context of ICU
- V/Q mismatching
 - Patient position (supine) Airway pressure, pulmonary parenchymal disease, small-airway disease
- Adjustments: FiO₂ and PEEP

Pressure ventilation vs. volume ventilation

Pressure-cycled modes deliver a fixed pressure at variable volume (neonates) Volume-cycled modes deliver a fixed volume at variable pressure (adults)

Pressure-cycled modes

- Pressure Support Ventilation (PSV) Pressure Control Ventilation (PCV)
- CPAP • BiPAP
- Volume-cycled modes
- Control
- Assist
- Assist/Control Intermittent Mandatory Ventilation
 (IMV)
- Synchronous Intermittent Mandatory Ventilation (SIMV)

Pressure Support Ventilation (PSV)

Parameters

- Triggered by pt's own breath Limited by pressure
- Affects inspiration only

• Uses

- Complement volume-cycled modes (i.e., SIMV)
- Does not augment T_v but overcomes resistance created by ventilator tubing
- PSV alone
- Used alone for recovering intubated pts who are not quite ready for extubation
- Augments inflation volumes during spontaneous breaths
- BiPAP (CPAP plus PS)

Pressure Control Ventilation (PCV)

- Parameters
- Triggered by time Limited by pressure
- Affects inspiration only

Disadvantages

 Requires frequent adjustments to maintain adequate V_E
 • Pt with noncompliant lungs may require alterations in interview to explain may require alterations in inspiratory times to achieve adequate ${\rm T}_{\rm V}$

CPAP and BiPAP

CPAP is essentially constant PEEP; BiPAP is CPAP plus PS

Parameters

- CPAP PEEP set at 5-10 cm H2O
- BiPAP CPAP with Pressure Support (5-20 cm H2O)
- Shown to reduce need for intubation and mortality in COPD pts

Indications

- When medical therapy fails (tachypnea, hypoxemia, respiratory acidosis)
- Use in conjunction with bronchodilators, steroids, oral/parenteral steroids, antibiotics to prevent/delay intubation
- Weaning protocols
- Obstructive Sleep Apnea

Assist/Control Mode

Ventilator delivers a fixed volume

Control Mode • Pt receives a set number of breaths and cannot breathe between ventilator breaths Similar to Pressure Control

Assist Mode

- Pt initiates all breaths, but ventilator cycles in at initiation to give a preset tidal volume
- Pt controls rate but always receives a full machine breath Assist/Control Mode

Assist mode unless pt's respiratory rate falls below preset value

Ventilator then switches to control mode

 Rapidly breathing pts can overventilate and induce severe respiratory alkalosis hyperinflation (auto-PEEP) and

IMV and SIMV

Volume-cycled modes typically augmented with Pressure Support

IMV

- Pt receives a set number of ventilator breaths
- Different from Control: pt can initiate own (spontaneous) breaths - Different from Assist: spontaneous breaths are not supported by machine with fixed $\rm T_{\rm y}$
- Ventilator always delivers breath, even if pt exhaling

SIMV

- Most commonly used mode Spontaneous breaths and mandatory breaths
- If pt has respiratory drive, the mandatory breaths are synchronized with the pt's inspiratory effort

Vent settings to improve <oxygenation>

PEEP and FiO₂ are adjusted in tandem

FIO₂

- Simplest maneuver to quickly increase P_aO₂ Long-term toxicity at >60%
- Free radical damage
- Inadequate oxygenation despite 100% FiO₂
 usually due to pulmonary shunting
 Collapse Atelectasis
- Pus-filled alveoli Pneumonia
- Water/Protein ARDS
- Water CHF
- Blood Hemorrhage

Vent settings to improve <oxygenation>

PEEP and FiO₂ are adjusted in tandem PEEP

- Increases FRC
 - Prevents progressive atelectasis and intrapulmonary shunting
- Prevents repetitive opening/closing (injury) Recruits collapsed alveoli and improves
- V/Q matching
- Resolves intrapulmonary shunting

• Rupture: PTX, pulmonary edema

- Improves compliance Enables maintenance of adequate P_aO₂ at a safe FiO₂ level
- Disadvantages Increases intrathoracic pressure (may require pulmonary a. catheter)

May lead to ARDS

Vent settings to improve <ventilation>

RR and T_v are adjusted to maintain V_E and P_aCO_2

- **Respiratory rate** • Max RR at 35 breaths/min Efficiency of ventilation decreases
- with increasing RR Decreased time for alveolar emptying
 • PIP
- ·Tv Goal of 10 ml/kg
- Risk of volutrauma
- Other means to decrease P_aCO₂
- Reduce muscular activity/seizures Minimizing exogenous carb load
- Controlling hypermetabolic states
- Permissive hypercapnea Preferable to dangerously high RR and T_v, as long as pH > 7.15
- I:E ratio (IRV) Increasing inspiration time will

increase T_{ν} , but may lead to auto-PEEP

- · Elevated PIP suggests need for switch from volume-cycled to pressure-cycled mode
- Maintained at <45cm H₂O to minimize barotrauma
- Plateau pressures
 - Pressure measured at the end of inspiratory phase
 - Maintained at < 30-35cm H₂O to minimize barotrauma

Alternative Modes

- I:E inverse ratio ventilation (IRV)
- ARDS and severe hypoxemia
 Prolonged inspiratory time (3:1) leads to better gas distribution with lower PIP Elevated pressure improves alveolar recruitment
- No statistical advantage over PEEP, and does not prevent repetitive collapse and reinflation

Prone positioning

- Addresses dependent atelectasis
 Improved recruitment and FRC, relief of
 diaphragmatic pressure from abdominal
 viscera, improved drainage of secretions Logistically difficult
 No mortality benefit demonstrated
- FCMO
- Airway Pressure Release (APR)

High-Frequency Ventilation (HFOV) Oscillatory High-frequency, low amplitude ventilation superimposed over

- ventilation superimposed over elevated P_{aw} Avoids repetitive alveolar open and closing that occur with low airway pressures
- Avoids overdistension that occurs at high airway pressures Well tolerated, consistent improvements in oxygenation, but unclear mortality benefits
- Disadvantages
- Potential hemodynamic compromise Pneumothorax
- Neuromuscular blocking agents

The critical period before the patient needs to be intubated Prevention Incentive spirometry Mobilization Humidified air Pain control Turn, cough, deep breathe Treatment Medications Albuterol Theophylline Steroids • CPAP, BiPAP, IPPB Intubation

Treatment of respiratory failure

Indications for intubation

How the values trend should significantly impact clinical decisions

Criteria

- Clinical deterioration Tachypnea: RR >35
- Hypoxia: pO2<60mm Hg
- Hypercarbia: pCO2 > 55mm Hg
- Minute ventilation<10 L/min
- Tidal volume <5-10 ml/kg Negative inspiratory force < 25cm H2O (how strong the pt
- can suck in)

Initial vent settings

- FiO₂ = 50%• PEEP = 5cm H_2O
- RR = 12 15 breaths/min
- $V_T = 10 12 \text{ ml/kg}$
- COPD = 10 ml/kg (prevent overinflation) • ARDS = 5-6 ml/kg (prevent
- volutrauma) Permissive hypercapnea

• Pressure Support = 10cm H₂O

Indications for extubation

No weaning parameter completely accurate when used alone

ical parameters solution/Stabilization of	Numerical Parameters	
	P/F	
ease process		

- Hemodynamically stable Intact cough/gag reflex
- Spontaneous respirations
- Acceptable vent settings • FiO₂< 50%, PEEP < 8, P_aO₂ > 75, pH > 7.25
- General approaches

SIMV Weaning

Clini

• Re

dis

- Pressure Support Ventilation (PSV) Weaning
- · Spontaneous breathing trials · Demonstrated to be superior

Normal Range Weaning Threshold 5 - 7 ml/kg 5 ml/kg 14 - 18 breath 65 - 75 ml/kg < 40 brea 10 ml/kg spiratory rat Vital capacity Minute volun 7 L/mi Greater Predictive Value Normal Range Weaning Threshold NIF (Negative Inspiratory Force) 90 cm H20 > - 25 cm H2O RSBI (Rapid Shallow Breathing < 50 < 100 :/TV) The ICU Bo

Spontaneous Breathing Trials

Settings	Causes of Failed	Treatments
• PEEP = 5, PS = $0 - 5$, FiO ₂ < 40%	SBTs	
Breathe independently for 30 –	Anxiety/Agitation	Benzodiazepines or haldol
120 min	Infection	Diagnosis and tx
ABG obtained at end of SBT	Electrolyte abnormalities (K ⁺ , PO ⁴⁻)	Correction
Failed SBT Criteria	Pulmonary edema, cardiac ischemia	Diuretics and nitrates
• RR > 35 for >5 min	Deconditioning, malnutrition	Aggressive nutrition
 S_aO₂ <90% for >30 sec 		
• HR > 140	Neuromuscular disease	Bronchopulmonary hygiene early consideration of trach
Systolic BP > 180 or < 90mm Hg	Increased intra-abdominal	Semirecumbent positioning
 Sustained increased work of 	pressure	
breathing	Hypothyroidism	Thyroid replacement
Cardiac dysrhythmia	Excessive auto-PEEP (COPD, asthma)	Bronchodilator therapy
• pH < 7.32	Sena et al, ACS Surgery: Principle Practice (2005).	s and

Continued ventilation after successful SBT

Inherent risks of intubation balanced against continued need for intubation

Commonly cited factors

- Altered mental status and inability to protect airway
- Potentially difficult reintubation
- Unstable injury to cervical spine
- Likelihood of return trips to OR
- Need for frequent suctioning

Need for tracheostomy

- Prolonged intubation may injure airway and cause airway edema
- Advantages
- Issue of airway stability can be separated from issue of readiness for extubation May quicken decision to extubate
- Decreased work of breathing Avoid continued vocal cord injury
- Improved bronchopulmonary hygiene
- Improved pt communication

- Disadvantages
 Long term risk of tracheal stenosis
 - Procedure-related complication rate (4% 36%)

Ventilator Waveforms

1. determine the CPAP level

this is the baseline position from which there is a downward deflection on, at least, beginning of inspiration, and to which the airway pressure returns at the end of expiration.

Ventilator Waveforms

- 2. is the patient triggering?
- •There will be a negative deflection into the CPAP line just before inspiration.

Ventilator Waveforms

3-A. what is the shape of the pressure wave?
If the curve has a flat top, then the breath is pressure limited, if it has a triangular or shark's fin top, then it is not pressure limited and is a volume breath.

Ventilator Waveforms

3-B. what is the flow pattern?

If it is constant flow (square shaped) this must be volume controlled, if decelerating, it can be any mode.

, Lpm	FLOW	
100	·····NELIGAN··	
50-		it is a second s
-50	- Commenter and the commentant of the commentant	
-100		
-150- Decelerating	Flow Constant Flow Sinusoidal Flow	
-2004 Decelerating		de la co

Ventilator Waveforms

3-C. Is the patient gas trapping?

• expiratory flow does not return to baseline before inspiration commences (i.e. gas is trapped in the airways at end-expiration).

Ventilator Waveforms

- 4. the patient is triggering is this a pressure supported or SIMV or VAC breath?
 - This is easy, the pressure supported breath looks completely differently than the volume control or synchronized breath: the PS breath has a decelerating flow pattern, and has a flat topped airway pressure wave. The synchronized breath has a triangular shaped pressure wave.

Ventilator Waveforms

- 5. the patient is triggering is this pressure support or pressure control?
 - The fundamental difference between pressure support and pressure control is the length of the breath – in PC, the ventilator determined this (the inspired time) and all breaths have an equal "i" time. In PS, the patient determined the duration of inspiration, and this varies from breath to breath.

Ventilator Waveforms

6. is the patient synchronizing with the ventilator?

Each time the ventilator is triggered a breath should be delivered. If the number of triggering episodes is greater than the number of breaths, the patient is asynchronous with the ventilator. Further, if the peak flow rate of the ventilator is inadequate, then the inspiratory flow will be "scooped" inwards, and the patient appears to be fighting the ventilator. Both of these problems are illustrated below

References

- 1. Sena, MJ et al. Mechanical Ventilation. ACS Surgery: Principles and Practice 2005; pg. 1-16.
- 2. Marino, PL. **The ICU Book**. 2nd edition. 1998.
- 3. Byrd, RP. Mechanical ventilation. Emedicine, 6/6/06.

Ventilator Graphics: Optimizing Ventilator Settings

WANG, Tzong-Luen Professor, Medical School, FJU Director, ED, SKH President, SECCM, Taiwan

Overview

- Graphical Assessment
- Calculating Loads
- PEEP
- Ventilator Dysynchrony

Graphical Displays

- Four Parameters commonly monitored
 - pressure
 - Ventilator circuit (Paw)
 - Esophagus (Pes) --pleural pressure
 - flow
 - volume
 - time
- Commonly plotted as pressure, flow, and volume over time

Breath Delivery

- Four phases of ventilatory cycle
 - trigger
 - flow delivery
 - cycle
 - expiratory phase
- Breaths described by what determines the above phases

Breath Types

	TRIGGER	TARGET/LIMIT	CYCLE
Volume control (VC)	time	flow	vol*
Volume assist (VA)	effort	flow	vol*
Pressure control (PC)	time	Pi**	time*
Pressure assist (PA)	effort	Pi**	time*
Pressure support (PS)	effort	Pi**	flow*
Pressure relief/release (PR)	time	Pi	time
Spontaneous (SP)	effort	Pi***	effort

Plateau Pressure

- Lung "overstretch" has been linked to VILI
- An approximation of lung stretch is the "end inspiratory" pressure
- Must be measured in a "no flow" state

Plateau Pressure

PEEPi and Flow Limitation

Patient Related Factors

- Anxiety
- Pain
- Secretions
- Bronchospasm
- Dynamic hyperinflation
- Abnormal respiratory drive
- Drugs
- Pulmonary edema

Nutrition

Ventilator Related Causes

- Ventilator disconnection
- System leak
- Circuit malfunction
- Inadequate FiO₂
- Inadequate ventilator support

Ventilator Support

- Minute ventilation has a quadratic relationship to work of breathing
- Patient with increased drive, asynchrony may result from:
 - overly sensitive trigger
 - inadequate peak flow or peak flow rate
 - prolonged inspiratory time
 - inadequate pressure support
 - inadequate expiratory time

Background

- Total vs partial support
- Interactive modes can be either synchronous or asynchronous with patient efforts
- Synchronizing is important to avoid "imposed" muscle loading

Overview

- Mechanical breath parameters
 - breath triggering (trigger criteria)
 - ventilator delivered flow pattern (target criteria)
 - ventilator flow termination (cycling criteria)
- Imposed expiratory loads (ET tube, PEEP valve)
- "Backup" ventilator breaths (if not timed appropriately with patient efforts)

Breath Triggering

- Ventilator must sense a spontaneous effort to initiate flow
 - sensitivity (trigger phase)
 - responsiveness (post-trigger phase)
- Inherent asynchrony
 - pleural pressure change dampened
 - avoid "autocycling"
 - demand valve delay

Breath Triggering

Minimizing Asynchrony

- Microprocessor flow controls
- Inspiratory pressure support
- Sensors in the pleural space or on the phrenic nerve
- Does the type of triggering matter?
 - Pressure
 - Flow

Auto-PEEP and Triggering

- In the setting of PEEPi, the elevated alveolar pressure at end inspiration can serve as a significant triggering load
- The addition of extrinsic PEEP may help with triggering, but will not affect the degree of hyperinflation

Effect of Delivered Flow

- Interactive breaths can be "assisted", "supported", or "unassisted"
- Ventilator breaths can meet one of three goals after triggering
 - fully unload the ventilatory muscles
 - partially unload the ventilatory muscles
 - not affect ventilatory muscle loads

Effect of Delivered Flow

- Inadequate flow rates may cause the patient to sense "air hunger" and lead to greater work of breathing
- Flow rates exceeding demand are also poorly tolerated and can lead to increased ventilatory drives and "double cycling"

Fully Unloaded Breaths

- Goal is to deliver adequate flow over the entire inspiratory effort to unload the contracting muscles
- Assess by comparing the pressure pattern of a patient and machine triggered breath

Fully Unloaded Breaths

- Synchrony requires careful selection of flow rate and pattern
- Patients with high respiratory drives often require high initial flow rates
- Pressure targeted breaths may be easier
 - high initial flows
 - flow is continuously adjusted

Fully Unloaded Breaths

- Problems with pressure targeting:
- patients with lower drives require lower flows
- pressure target is the proximal airway...thus there is inherent under-responsiveness
- Studies comparing pressure and flow targeted breaths are lacking
- Proportional assist may be an alternative in the future

Breaths to Partially Unload

- Intermittently shift work between patient and ventilator
- Patient triggers the breath and then "shares" the work of the breath
- Studies directly comparing the two methods are lacking....though IMV tends to increase overall work done by the patient

Flow Termination: Cycling

- Cycling should be done in accordance with patient demand and adequate tidal volume
- Premature termination may lead to decreased tidal volume or inspiratory load
- Delayed termination may result in increased tidal volume or expiratory load

Flow Termination: Cycling

- With pressure targeted breaths, termination may be accomplished in several ways:
 - 25-30% of peak flow (duration and magnitude of patient effort can affect Ti)
 - PS level and rate of pressure rise can also affect Ti
 - Pressure assisted breaths....set Ti

Most Common Reasons for Dysynchrony

- ACV: Inappropriate flow settings
- IMV: Little breath-breath adaptation...as backup rate decreases, WOB increases
- PSV: prolongation of inspiratory flow beyond patient's neural inspiratory time...this may also lead to PEEPi and triggering difficulty

Overview

- Graphical Assessment
- Calculating Loads
- PEEP
- Ventilator Dysynchrony
- Patient comfort, synchrony with the ventilator is important to avoid imposed loads on the respiratory system
- Must consider trigger, flow, and cycling criteria when the patient "fights" the ventilator
- If problem unclear from the airway pressure tracing, consider placing an esophageal balloon