Case discussion

2011/03/05

Speaker: R1 游姿寧

Supervisor: F2 黄婷韵

Discussion

- Shock
- Metabolic acidosis

Definition of shock

- An imbalance between tissue oxygen supply (delivery) and oxygen demand (consumption)
- Systemic oxygen delivery
 - arterial oxygen content
 - Cardiac output
- Systemic oxygen consumption
 - Normally: 25% of oxygen carried on hemoglobin
 - 75% saturated venous blood return to right heart
 - I.e. ScvO₂≈ 75%

Definition of shock

- If supply < demand</p>
 - Anaerobic metabolism
 - Formation of lactic acid and lactate
 - Lactic acidosis
 - Normal lactate: 0.5-1.5 mmol/L

Autonomic responses to shock

- Arteriolar vasoconstriction
- Increase in heart rate and contractility
- Constriction of venous capacitance vessels
- Release of vasoactive hormones: Epi, NEP, dopamine, cortisol
- Release of antidiuretic hormone and activation of renin-angiotension axis

Classification of shock

Type	Comment
Hypovolemic	Caused by inadequate circulating volume
Cardiogenic	Caused by inadequate cardiac pump function
Obstructive	Caused by extra cardiac obstruction to blood flow
Distributive	Metabolic derangements that impair cellular respiration such as cyanide toxicity, sepsis

Empirical criteria for diagnosis of shock

- Including > 4 criteria:
 - Ill appearance or altered mental status
 - HR >100 beats/min
 - RR >20 breaths/min, or PaCO2 <32 mmHg
 - Arterial base deficit <-4 mEq/L, or lactate >4 mM/L
 - U/O <0.5 ml/kg/hr
 - Arterial hypotension >20 minutes duration

Definitions and criteria for septic shock

- Systemic inflammatory response syndrome (SIRS): ≥2 of following:
 - − BT >38 or <36</p>
 - HR >90 bpm
 - RR >20 or Paco2 <32 mmHg</p>
 - WBC >12000, <4000, or >10% band form
- Severe sepsis
 - SIRS+infection+organ dysfunction or hypotension
- Septic shock
 - SIRS+infection+hypotension despite adequate fluid resuscitation

Definitions and criteria for hemorrhagic shock

- Simple hemorrhage
 - Bleeding with HR <100, normal RR, normal BP, normal BE
- Hemorrhage with hypoperfusion
 - Bleeding, BE <-4 mEq/L or persistent pulse>100
- Hemorrhagic shock
 - Meet the shock criteria

Definitions and criteria of cardiogenic shock

Cardiac failure

- Clinical evidence of impaired forward flow of the heart
- Including: <u>dyspnea</u>, <u>tachycardia</u>, <u>pulmonary</u>
 <u>edema</u>, peripheral edema, cyanosis

Cardiogenic shock

Cardiac failure with shock criteria

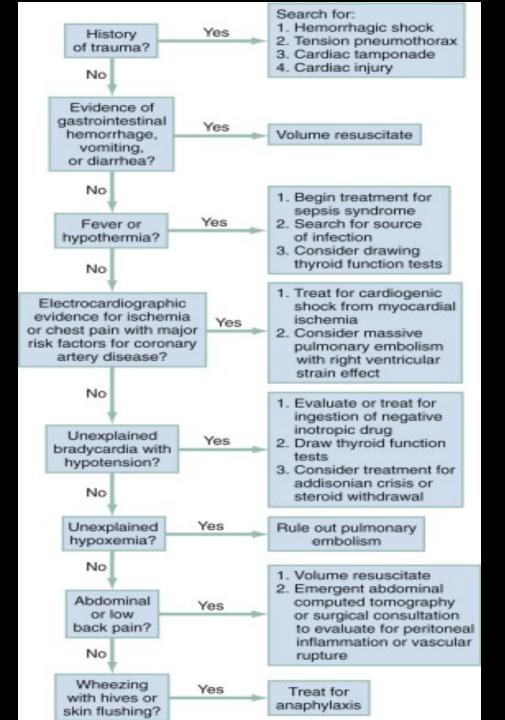
Clinical features

- History taking first!
 - Volume depletion: bleeding, vomiting, diarrhea, excessive urination, insensible losses due to fever, orthostatic light-headedness
 - CV disease? Chest pain? CHF?
 - Anaphylactic reaction: new medication?
 - Medication history: b-blockers, CCB, diuretics

- SBP <90 mmHg: usually, but NOT always</p>
 - Shock may occur with a normal blood pressure
 - Hypotension may occur without shock
- Shock index

- To evaluate volume loss, LV dysfunction
- Normal: 0.5-0.7
- ->1.0: high mortality rate

- BT: hyperthermia or hypothermia
- HR: usually elevated; paradoxical bradycardia in hemorrhage (>30%), hypoglycemia, b-blocker use, CV disease
- SBP, DBP
- Pulse pressure: increases early in shock, decreases before SBP
- Pulsus paradoxus: decrease in SBP when inspiration


- CNS: acute delirium, brain failure, restlessness, disorientation, confusion, coma
- Skin: pallor, dusky, clammy, cyanosis, sweating...
- CV: neck vein distention or flattening, tachycardia, arrhythmia, murmur...
- Respiration: tachypnea, hypocapnia, resp. failure...

- Splanchnic organs: ileus, GI bleeding, pancreatitis, acalculous cholecystitis, mesenteric ischemia
- Renal: reduced GFR, oliguria, paradoxical polyuria can occur in sepsis
- Metabolic: resp. alkalosis at first; metabolic acidosis later; hyperglycemia, hypoglycemia, hypoglycemia, hyperkalemia

Ancillary studies in shock

- Basic evaluation: CBC, ion, glucose, Ca, Mg, P,
 BUN, Cre, PT/PTT, U/A, CXR, EKG
- Moderate physiologic assessment: ABG, lactate, fibrinogen, D-dimer, liver function
- Noninvasive hemodynamic assessment: end-tidal
 CO₂, echocardiogram
- Invasive hemodynamic assessment: CVP, $S_{CV}O_2...$
- Others: CT, echo, cortisol level, pregnancy test....

Flow diagram to classify undifferentiated shock

Treatment of shock

Ensure ABCDE

- Airway:
 - Sedative: hypotension
 - Positive pressure ventilation: reduce preload and CO
 - Consider volume resuscitation or give vasoactive agents before intubation
- Breathing:
 - Arterial oxygen saturation >93%
 - PaCO2 35-40 mmHg

Treatment of shock

- Circulation
 - Trendelenburg position: no improvement
 - Passive leg raising above the level of heart: effective
 - Isotonic crystalloid at first: 500-1000 ml
 - Initial 20 ml/kg
 - Exception: cardiogenic shock with pulmonary edema
 - To restore MAP >65 mmHg or SBP >90 mmHg
 - Consider to give vasopressor agents
- Assuring adequate oxygen Delivery
 - SaO2: 93-95%
 - Jecupies Hb ≥10 g/dL

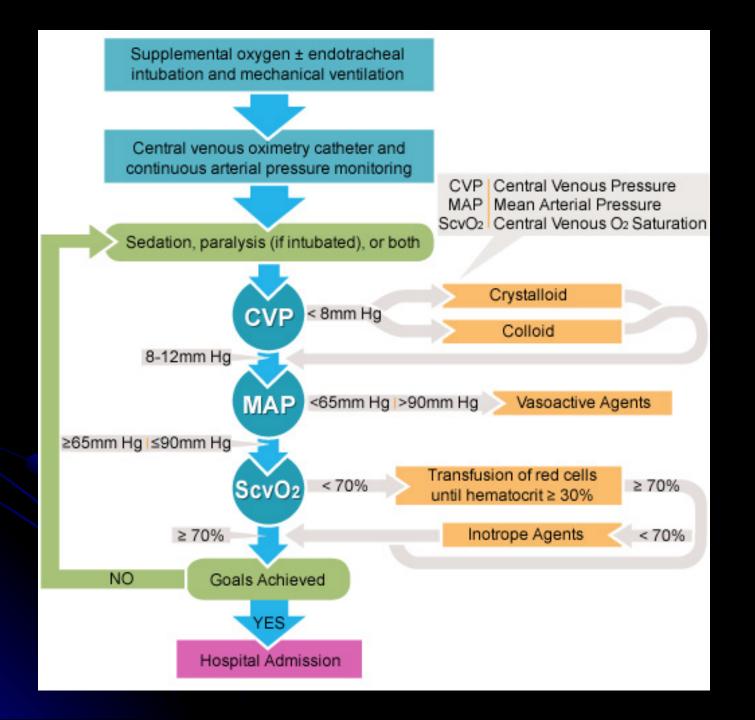
Treatment of shock

- End points of resuscitation
 - No therapeutic end point
 - Urine output >0.5 ml/kg/hr
 - □ CVP 8-12 mmHg
 - MAP 65-90 mmHg
 - SCVO2 >70%

Treatment of hemorrhagic shock

- Immediate control of hemorrhage
- Isotonic crystalloid solution (10-20 ml/kg)
- If poor organ perfusion and 30-minute anticipated delay to hemorrhage control, give pRBC infusion (5-10 ml/kg)
- If CNS trauma, or GCS <9, immediate pRBC transfusion</p>
- Treat dysrhythmia

Treatment of cardiogenic shock


- Give vasopressor or inotropic support
 - Norepinephrine 0.5 ug/min
 - Dobutamine 5 ug/kg/min
- Reverse the insult: e.g. initiate thrombolysis, PTA...
- Consider IABP for refractory shock

Treatment of septic shock

- Give 20 ml/kg of crystalloid or 5 ml/kg of colloid
- Antimicrobial therapy
- Surgical drainage or debridement
- Transfusion for Hb < 8 g/dl</p>
- Vasopressor support
 - Dopamine, 5-15 ug/kg/min
 - Norepinephrine, 0.5 mg/min

Treatment

- Early goal-directed therapy
 - In 6 hours
 - Reduce mortality by 16%

What fluid is better?

- Normal saline: slightly hyperosmolar, 154 mEq/L of Na and Cl; hyperchloremic metabolic acidosis
- Lactated Ringer's solution: as a buffer; risk of hyperkalemia in renal insufficiency
- Albumin: may increase mortality in trauma pt with head injury
- Hydroxyethyl starch (Voluven): should be avoided in sepsis; cause renal impairment, coagulopathy, impaired plt function...

Metabolic acidosis

Metabolic acidosis

- Gain of H
- Loss or HCO₃⁻

Initial workup of metabolic acidosis

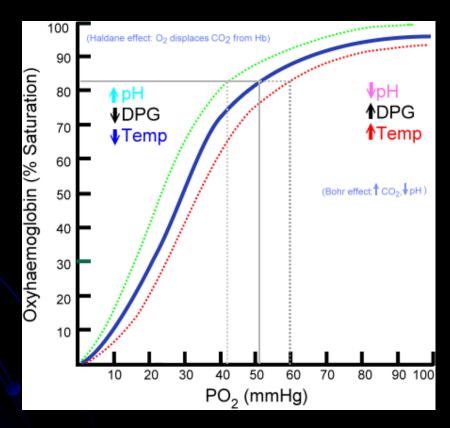
- Anion gap (AG)
 - AG=Na-(CI+HCO3), normal=12
 - Expected AG=[Albumin]x2.5
 - ↑AG: increased organic acids, phosphates, sulfates...
 - ↓AG: decreased albumin or increased Ca, Mg, K, Li, Br, Ig...
- Delta-delta ($\Delta \Delta = \Delta AG/\Delta HCO3$)
 - ΔAG=calculated AG-expected AG
 - $-\Delta HCO3=24-HCO3$
 - $-\Delta \Delta = 1-2$: pure AG metabolic acidosis
 - Δ Δ<1: AG metabolic acidosis+non-AG acidosis</p>
 - Δ Δ>2: AG metabolic acidosis+metabolic alkalosis

Our patient....

- Initial data:
 - ABG: pH 7.077, PaCO2 15.7, HCO3 4.6
 - Na130, Cl 102
- Metabolic acidosis
 - AG=Na-(CI+HCO3)= 130-(102+4.6)= 23.4
 - AG >12 → anion gap metabolic acidosis
 - Check ∆ ∆
 - $^{3}\Delta AG/\Delta HCO3=11.4/19.6=0.58$
 - $\Delta \Delta < 1 \rightarrow AG$ metabolic acidosis+non-AG acidosis

Etiology of AG metabolic acidosis

- Ketoacidosis: DM, alcoholism, starvation
- Lactic acidosis
 - <u>Type A</u>: impairment in tissue oxygenation, e.g. circulatory or respiratory failure, sepsis, CO...
 - Type B: no impairment in tissue oxygenation, e.g. malignancy, alcoholism, medication (Metformin!)
- Renal failure: organic anions, e.g. P, SO3, urate
- Ingestions
 - Methanol, ethylene glycol, propylene glycol, salicylate, acetaminophen
 - Check osmolal gap (OG)
 - Calculated osmoles=2Na+(Glucose/18)+(BUN/2.8)+(EtOH/4.6)
 - OG=measured-calculated


Etiology of non-AG metabolic acidosis

- GI losses of HCO3: diarrhea...
- Renal tubular acidosis (RTAs)
- Early renal failure: impaired generation of ammonia
- Ingestions
- Dilutional: rapid infusion of HCO3-free fluid
- Post-hypocapnia
- Ureteral diversion: colonic Cl/HCO3 exchange, ammonium reabsorption....

How to use NaHCO₃?

Bicarbonate use in shock

 Shift oxygen-Hb dissociation curve to the left, worsen intracellular acidosis

Bicarbonate use in shock

- Correct only to arterial pH 7.25
- How to use?
 - Calcuate the bicarbonate deficit
 - √ (Normal HCO₃-pt's HCO₃) x 0.5 x BW (Kg)
 - Slowly infuse one half of the calculated deficit
 - Infusion the remainder over 6-8 hours
 - Stop bicarbonate when arterial pH 7.25

- NaHCO3, 7% 20ml/amp
- 1.4 g/amp
- 16.8 mEq/amp

Thanks